Electronic Theses and Dissertations (Masters)
Permanent URI for this collection
Browse
Browsing Electronic Theses and Dissertations (Masters) by School "School of Geography, Archaeology and Environmental Studies"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Estimating rooftop solar energy potential using spatial radiation models and thermal remote sensing: The case of Witwatersrand University(University of the Witwatersrand, Johannesburg, 2023) Ndemera, Rudo Hilda; Adem, Ali K.; Adam, ElhadiThe main purpose of this research was to estimate the University of Witwatersrand building’s rooftop solar energy potential using the GIS-based solar Area Solar Radiation (ASR) analyst upward hemispherical view shed algorithm. The two major datasets used in this research for rooftop solar energy potential modelling are building footprint data and the Digital Surface Model. Building footprint data, specifically rooftop area was extracted using machine learning CNTK unified toolkit and deep neural networks. The data was presented as individual polygon shape files for each building. The high-resolution Digital Surface Model imagery was sourced from the Advanced Land Observation Satellite. Pre-processing of the imagery was done for atmospheric correction. The DSM was then used in the Area Solar Radiation model to create an upward view shed for every point on the study area which is essential for computing solar radiation maps. The efficiency of using this algorithm is that it considers the shading effects caused by surrounding topography and surrounding man-made features, alterations in the azimuth angle and the position of the sun. Apart from the incoming solar radiation reaching the rooftops, the elevation and orientation of the rooftop cells limit the solar panel tilt angle and intensity of the incoming solar radiation, respectively. These factors were used in setting the suitability criteria together with solar radiation for the identification of suitable rooftop cells in this research. The relationship between land surface temperature and solar radiation values was assessed to determine if it can be used as an indicator for solar panel efficiency. Results from this research indicate that the University of Witwatersrand receives high levels of incoming solar radiation and has a high solar energy rooftop generation capacity that can meet the energy demand on campus. To improve accuracy of the research results, a drone could have been used to measure insolation across the study area to improve the spatial resolution. However, this was not possible due to various restrictions.Item Mapping and monitoring land transformation of Boane district, Mozambique (1980 – 2020), using remote sensing(University of the Witwatersrand, Johannesburg, 2023) Dengo, Claudio Antonio; Atif, Iqra; Adam, ElhadiAlthough natural and environmental factors play a significant role in land transformation, human actions dominate. Therefore, to better understand the present land uses and predict the future, accurate information describing the nature and extent of changes over time is necessary and critical, especially for developing countries. It is estimated that these countries will account for 50% of the world's population growth in the next few years. Hence, this research was an attempt to assess and monitor land cover changes in Boane, Mozambique, over the past 40 years and predict what to expect in the next 30 years. This district has been challenged by a fast-growing population and land use dynamic, with quantitative information, driving forces and impacts remaining unknown. Through a supervised process in a cloud base Google Earth Engine platform, a set of five Landsat images at ten-year intervals were classified using a random forest algorithm. Seven land classes, i.e., agriculture, forest, built-up, barren, rock, wetland and water bodies, were extracted and compared through a pixel-by-pixel process as one of the most precise and accurate methods in remote sensing and geographic information system applications. The results indicate an active alternate between all land classes, with significant changes observed within agriculture, forest and build-up classes. As it is, while agriculture (-26.1%) and forest (-21.4%) showed a continuously decreasing pattern, build-up class (45.8%) increased tremendously. Consequently, over 69% of the forest area and 59% of the agricultural area shifted into build-up, i.e., was degraded or destroyed. Similarly, the conversion of barren land area (57.2%) and rock area (47.3%) into build-up indicates that those areas were cleaned. The overall classification accuracy averaged 90% and a kappa coefficient of 0.8779 were obtained. The CA-Markov model, used to assess future land uses, indicates that build-up will continue to increase significantly, covering 60% of the total area. From this finding, the land cover situation in the next 30 years will be critical if no action is taken to stop this uncontrolled urban sprawl. An adequate land use plan must be drawn, clearly indicating the locations for different activities and actions for implementation.