Investigating the effect of size, density and shape of Iron ore particles on batch jig performance
Date
2024-02
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
University of the Witwatersrand, Johannesburg
Abstract
The gravity separation method is one of the oldest methods of mineral beneficiation that takes advantage of the difference in the specific gravity of particles that are being separated. The separation occurs in a fluid medium, usually water, and involves floating off lighter material to leave behind denser ones. There are several types of gravity separation techniques, and they vary according to the equipment that is used for the separation or the property of the medium that is being used; the main gravity separation methods that are widely used for the beneficiation of Iron ore are Jigging and Dense Medium Separation (DMS). In this research, the jigging method is selected to investigate the concentration of an Iron ore by using a batch laboratory Jig; the jigging method was preferred for its simplicity and availability, generally Jigging has several advantages, some of which include cost effectiveness and simplicity of operation and its minimum impact on the environment. During the beneficiation of minerals using the jigging method of ore concentration, several feed material characteristics affect the efficiency, such as the particle density, size and shape. The aim of this research was to investigate the effect of these feed properties on jig performance. Tests were conducted on a Hematite ore sample using a batch jig to gain a deeper understanding of how the density, the size and shape of particles affect segregation. The iron ore samples were screened and any extremely small particles were removed, maintaining a particle size range between 2.8 and 10 mm. The results showed that particles were stratified on the basis of their specific gravity, denser particles reported toward the bottom layer of the bed and separated more efficiently. Less denser particles reported more toward the upper layer of the bed and were less efficiently separated. Coarser particles tend to report to the bottom layer of the bed and finer particles to the top product layer. Particles that were flatter and more elongated tended to end up in the bottom layer of the bed more often, while more rounded particles were not as likely to be found in the bottom layer.
Description
A thesis being submitted in partial fulfilment of the requirements for the Degree of Master of Science in Engineering, School of Chemical and Metallurgical Engineering Faculty of Engineering and the Built Environment University of the Witwatersrand, Johannesburg, South Africa, in 2024.
Keywords
Jig, Mineral processing, Rhovol iron ore, Dense Medium Separation (DMS), Hematite ore, UCTD
Citation
Dzaringa Kisembo, Daniel Elvis. (2024). Investigating the effect of size, density and shape of Iron ore particles on batch jig performance. [Master's dissertation, University of the Witwatersrand, Johannesburg]. WIReDSpace. https://hdl.handle.net/10539/38872