Comparing the effectiveness of LSTM, ARIMA, and GRU algorithms for forecasting customer charging behavior in the electric mobility industry in Europe
Date
2023
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
University of the Witwatersrand, Johannesburg
Abstract
Forecasting, a powerful technique for unveiling potential future events, relies on historical data and methodological approaches to provide valuable insights. This dissertation delves into the domain of electric mobility, investigating the effectiveness of three distinct algorithms—Long Short-term Memory (LSTM), Autoregressive Integrated Moving Average (ARIMA), and Gated Recurrent Unit (GRU)—for predicting customer charging behavior. Specifically, it focuses on forecasting the number of charges over a 7-day period using time-series data from European electric mobility customers. In this study, we scrutinize the interplay between algorithmic performance and the intricacies of the dataset. Root mean squared error (RMSE) serves as a metric for gauging predictive accuracy. The findings highlight the supremacy of the ARIMA model in single-variable analysis, surpassing the predictive capabilities of both LSTM and GRU models. Even when additional features are introduced to enhance LSTM and GRU predictions, the superiority of ARIMA remains pronounced. Notably, this research underscores that ARIMA is particularly well-suited for time series data of this nature due to its tailored design. It contributes valuable insights for both researchers and practitioners in the electric mobility industry, aiding in the strategic selection of forecasting methodologies.
Description
Masters Dissertation in the School of Computer Science and Applied Mathematics at University of the Witwatersrand, Johannesburg, 2023
Keywords
Algorithms, Long Short-term Memory (LSTM), Autoregressive integrated moving average (ARIMA), Gated recurrent unit (GRU), Electric mobility