Feature detection in guided wave ultrasound measurements using simulated spectrograms and generative machine learning
dc.article.end-page | 15 | en |
dc.article.start-page | 1 | en |
dc.citation.doi | 10.1016/J.NDTEINT.2024.103036 | en |
dc.contributor.author | Isaac Setshedi | en |
dc.contributor.author | D Wilke | en |
dc.contributor.author | Philip Loveday | en |
dc.date.accessioned | 2024-10-28T13:34:21Z | |
dc.date.available | 2024-10-28T13:34:21Z | |
dc.faculty | FACULTY OF ENGINEERING & THE BUILT ENVIRONMENT | en |
dc.identifier.citation | WOS | en |
dc.identifier.issn | 0963-8695 | en |
dc.identifier.uri | https://hdl.handle.net/10539/42036 | |
dc.journal.title | Feature detection in guided wave ultrasound measurements using simulated spectrograms and generative machine learning | en |
dc.journal.volume | 143 | en |
dc.school | 3.06 | en |
dc.title | Feature detection in guided wave ultrasound measurements using simulated spectrograms and generative machine learning | en |
dc.type | Journal Article | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Journal Article.pdf
- Size:
- 5.55 MB
- Format:
- Adobe Portable Document Format
- Description:
- Bitstream uploaded by REST Client