Remote sensing-based assessment of mangrove forest changes and related regulatory frameworks for the sustainability and conservation of coastal ecosystems in Zanzibar Island, Tanzania-East Africa
Date
2024-10
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
University of the Witwatersrand, Johannesburg
Abstract
Mangroves are vital components of the world's coastal ecosystems, yet they face significant threats from storm surges, tidal waves, commercial aquaculture, and expanding human settlements. These challenges have heightened the need for accurate mangrove maps to gauge ecosystem degradation. However, mapping mangroves at species and community levels is challenging due to the inaccessibility of these environments. Remote sensing offers an efficient alternative to conventional field-based methods by enabling data collection in these challenging ecosystems. This study aimed to apply remote sensing techniques to map mangrove forest changes and species in two protected bays in Zanzibar, Tanzania. The thesis focuses on four key areas. First, it examines the history of mangrove management in Zanzibar, from colonial times (1890) to the present, highlighting policies, laws, and community involvement in conservation. The colonial authority implemented several land administration laws and regulations to protect mangrove forests. However, mangrove forests suffered significant degradation from 1930 to the end of World War II. The post-independence policy framework established the legal foundation for the introduction of community involvement in mangrove conservation. The legal foundation for introducing community participation in mangrove protection was established by post-independence policy structures such as the National Forest Conservation and Management Act of 1996. Nevertheless, sustainable mangrove use remains inadequate. Second, the study compared community perceptions of mangrove ecosystem services using chi-squared tests and one-way ANOVA. Household surveys showed that provisioning services (PS) were the most identified (84%). Supporting (SS), regulating (RS), and cultural services (CS) were rated by 46.2%, 45.4%, and 21.0%, respectively. Statistical analyses indicated significant differences in the awareness of RS (χ2 = 6.061, p = 0.014) and SS (χ2 = 6.006, p = 0.014) between Chwaka, Charawe, Ukongoroni, Unguja Ukuu, and Uzi wards. There were no significant differences in the identification of PS (χ2 = 1.510, p = 0.919) and CS (χ2 = 1.601, p = 0.901). The study found that residents’ occupations did not determine their reliance on mangrove ecosystem services (χ2 = 8.015; p = 0.1554). Third, changes in mangrove cover in Menai Bay and Chwaka Bay between 1973 and 2020 were analyzed using Landsat data. TerrSet geospatial software was used to classify land cover. The SEGMENTATION module grouped pixels based on spectral similarity, and the images segments were transformed into training sites and signature classes using the SEGTRAIN module. Finally, the segments were classified with the SEGCLASS module into a pixel-based land cover map. Separation of land cover classes was determined using the Jeffries–Matusita (J-M) distance and the transformed divergence (TD) index. For Chwaka Bay, overall classification accuracy ranged from 82.5% to 92.7%, while for Menai Bay, it ranged between 85.5% and 94.5%. Producer and user accuracies ranged from 72% to 100%, with kappa coefficients (κ) between 0.72 and 0.90. Menai Bay experienced a 6.8 ha yearly decline in mangrove cover between 1973 and 2020, while Chwaka Bay saw a 48.5 ha annual decrease. Fourth, the study aimed to map mangrove species in Menai Bay using metrics extracted from the Landsat 9 OLI-2 dataset, i.e., vegetation indices (VIs) and gray-level co-occurrence matrices (GLCMs). A critical step in this study was identifying the contribution of vegetation indices and texture features to classifying mangroves. Training data from very high-resolution (VHR) unmanned aerial vehicle (UAV) data covering parts of the study area helped identify five major mangrove species, i.e., Rhizophora mucronata, Ceriops tagal, Sonneratia alba, Avicennia marina, and Bruguira gymnorrhiza. Results showed that textural features attained overall classification accuracy of 68.29% (kappa = 0.62) and 67.07% (kappa = 0.60) for random forest (RF) and support vector machine (SVM), respectively. Vegetation indices (VIs) recorded overall accuracy of 72.64% (kappa = 0.67) and 67.78% (kappa = 0.61) for RF and SVM. Overall, this study demonstrates the potential of remote sensing technologies for mapping mangrove forest changes and species in challenging environments like Zanzibar’s protected bays. By integrating historical policy analysis with modern geospatial techniques, the research highlights the significant role of both legal frameworks and community involvement in mangrove conservation. The community surveys underscore the varying perceptions of mangrove ecosystem services across different wards, with provisioning services being the most recognized. These findings underscore the importance of advancing remote sensing applications and refining conservation strategies to ensure the sustainability of mangrove ecosystems. Additionally, the analysis of long-term changes in mangrove cover from 1973 to 2020 reveals a concerning decline, particularly in Chwaka Bay. Lastly, the study’s classification of mangrove species using Landsat 9 OLI-2 data, vegetation indices, and texture metrics achieved notable accuracy, emphasizing the value of remote sensing in distinguishing species-level characteristics.
Description
A thesis submitted in fulfillment of the academic requirements for the degree of Doctor of Philosophy in Geography and Environmental Sciences, to the Faculty of Science, School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, 2024.
Keywords
Mangroves, Landsat, GLCM, ANOVA, Random Forest, Vegetation indices, Regulatory frameworks, Ecosystem services, Zanzibar, UCTD
Citation
Mohamed, Mohamed Khalfan. (2024). Remote sensing-based assessment of mangrove forest changes and related regulatory frameworks for the sustainability and conservation of coastal ecosystems in Zanzibar Island, Tanzania-East Africa. [PhD thesis, University of the Witwatersrand, Johannesburg]. WIReDSpace. https://hdl.handle.net/10539/45157