School of Animal, Plant and Environmental Sciences (ETDs)
Permanent URI for this communityhttps://hdl.handle.net/10539/37998
Browse
Search Results
Item The impact of nickel and chrome mine tailings on the growth of Hibiscus cannabinus and Linum usitatissimum and a preliminary assessment of their applicability as economically beneficial phytoremediation species(University of the Witwatersrand, Johannesburg, 2023-07) Campbell, Tiago Roberto; Furniss, David; Scholes, MaryCurrent and previous mining activities in South Africa have caused various environmental, human health and societal impacts. This has led to the formation and enforcement of legislation regarding the rehabilitation of active, closed and abandoned mines in South Africa. The requirements contained in this legislation include rehabilitation, skills transfer, job creation and development of post mine land use regarding active, closed and abandoned mines. A common impact of mining activities is the contamination of soils with various metals. The process of phytoremediation has demonstrated potential in the remediation of metal contaminated soils. Plant species commonly utilised in this process are hyper accumulators, which can translocate and accumulate high concentrations of various metals from soils into their biomass. However, large areas of previously economically productive land become underutilised when hyper-accumulators are used for phytoremediation. Economically valuable fibrous plant species have demonstrated potential in their use as phytoremediation species. This presents an opportunity in which economically valuable plant species could be utilised in phytoremediation applications on active, closed and abandoned mines in South Africa. Thus, the aim of this research was to assess the ability of Hibiscus cannabinus and Linum usitatissimum to grow in and extract metals from soil contaminated with nickel and chrome mine tailings. Furthermore, the concurrent use of H. cannabinus and L. usitatissimum as phytoremediative and economically beneficial plant species was determined. Normal (non impacted), rehabilitated (previously impacted) and tailings (impacted) soil treatments were collected and used from the Onverwacht tailings storage facility of Nkomati Nickel mine. Hibiscus cannabinus and L. usitatissimum were cultivated in each soil treatment in greenhouse conditions over a six-month period. Multiple plant growth parameters were recorded at monthly intervals. The amount (mg) and concentration (mg/kg) of Mn, Zn, Ni, Cu, Cr and Co contained within plant tissue samples at the end of the six-month period was determined. The area (ha) of land categories available for H. cannabinus and L. usitatissimum cultivation onsite was determined using Sentinel 2B satellite imagery and supervised image classification. The measured and expected total yield (t), yield value (R), profit/loss margin (R) and amount (g/ha) of Mn, Zn, Ni, Cu, Cr and Co extracted through cultivation of H. cannabinus and L. usitatissimum onsite was determined. The growth of H. cannabinus and L. usitatissimum cultivated in rehabilitated soil was severely impacted. While growth of each species exhibited minimal differences between those cultivated in normal and tailings soil. Hibiscus cannabinus consistently exhibited greater growth than L. usitatissimum. Both species demonstrated the ability to accumulate varying amounts and concentrations of each of the tested metals in their total, above and below ground components. Both species consistently accumulated increased amounts and concentrations of Mn and Zn. Those cultivated in tailings soil exhibited increased accumulation of Cr. Linum usitatissimum generally accumulated metals at higher concentrations than H. cannabinus, however, minimal differences in the amount of metal accumulated between species were observed. Based on the measured yield cultivation of each species onsite would result in economic loss and generally low metal extraction. However, based on the expected yield, species cultivation onsite, in normal and tailings soil, would result in economic gain and generally high metal extraction. Hibiscus cannabinus and L. usitatissimum exhibited phytoremediative and economic potential. Aspects of the current state of mine impacted land in South Africa and the requirements of rehabilitation enforced through South African legislation could possibly be addressed through the application of H. cannabinus and L. usitatissimum for mine rehabilitation strategies.Item Comparative Analysis of Water Hyacinth Efficiency as Biosorbent and Phyto remediating Plant for Removal of Lead (Pb) Water Contaminants(University of the Witwatersrand, Johannesburg, 2023-08) Nwagbara, Victor Uzoma; Parrini, Francesca; Newete, SolomonOne of the major problems facing the modern society is the issues of water contamination. The ability of aquatic plants to serve as both heavy metal biomarkers and phytoremediators has been advocated for many years. The purpose of this study was therefore to compare the efficacy of water hyacith as a biosorbent and phytoremediating plant for removal of lead from contaminated waters. Dry and fresh water hyacinth biomass were exposed to Pb-contaminated water at different time intervals of 1, 7, 14 and 21 days. The results showed that with the increase of the exposure time, the Pb removal capacity of the plant biomass also increased. The Pb water concentration in day 1 and day 7 were significantly different from those in day 14 and day 21 which were not significantly different from each other. The average Pb removal from the Pb-treated waters for the different time exposure of 1, 7, 14 and 21 days in the fresh water hyacinth biomass were 40%, 56%, 78 % and 79%, respectively, the highest reduction being in the latter. The biomass of the freshwater hyacinth roots had the highest Pd concentration compared to the shoot. On The other hand the average Pb removal by the dry water hyacinth biomass were 78.9 %, 78.5%, 78.3 % and 78.3% for day 1, 7, 14 and 21 respectively, showing no significant difference between the different time series exposure. This suggests the instant adsorption of Pb by the dry plant material from the first day of exposure, after which the active sites for adsorption saturates to accommodate any further Pb ion uptake. There were some plant stresses such as leaf chlorosis, and significant decrease in biomass weight and length of leaf-2 petiole in the lead-treated fresh water hyacinth plants compared to the controls (Pb-free water hyacinth plant). Thus, this study confirms that the largest removal by the dry water hyacinth biomass, occurred in the first day as opposed to the last day (day 21) by the freshwater hyacinth biomass.