4. Electronic Theses and Dissertations (ETDs) - Faculties submissions
Permanent URI for this communityhttps://hdl.handle.net/10539/37773
Browse
20 results
Search Results
Item Silver nanoparticle-modified cellulose nanocrystals for fouling control in membrane distillation(University of the Witwatersrand, Johannesburg, 2023-06) Mpala, Josephine Tshepiso; Nthunya, Lebea; Richards, Heidi; Etale, AnitaA global reduction in water resources and the growing demand for fresh water has motivated the quest for the development of sustainable water-augmenting technologies. Membrane distillation (MD) is envisaged as an attractive desalination technology, surpassing cost challenges faced by conventional desalination technologies. Yet, its industrial commercialization faces multiple limitations, including the production of low water fluxes, membrane wetting and membrane fouling. This study sought to investigate the performance of silver nanoparticles (AgNPs) embedded on cellulose nanocrystals (CNCs) (CNC-capped AgNPs) to lessen the impact of biofouling in MD. This was conducted through coating the polyvinylidene fluoride (PVDF) membrane with CNCcapped AgNPs. Prior to coating with CNC-capped AgNPs, PVDF membrane properties were improved (for MD suitability) through blending with polyvinylpyrrolidone (PVP) and functionalized carbon nanotubes (f-CNTs). The resulting membrane had an improved overall porosity, and a respective increase in surface roughness (75%) and mechanical strength (45%). Pristine CNC-capped AgNPs’ characterization presented stable AgNPs with minimal leaching. Transmission electron microscopy (TEM) micrographs revealed a uniform dispersion of spherically shaped AgNPs exhibiting 13.3 ± 3.4 nm average diameter. The presence of AgNPs on the surface of CNCs afforded excellent thermal stability and good anti-microbial activity, mainly against E. coli, P. aeruginosa, S. aureus, S. epidermis, and S. saprophyticus. Following membrane modification, preliminary anti-bacterial tests conducted on the CNC/AgNP-modified PVDF membrane revealed a 98.7%, 52.3%, 78.0%, 53.9% and 93.3% reduction of E. coli, P. aeruginosa, S. aureus, S. epidermis, and S. saprophyticus cells, respectively, demonstrating its ability to control biofouling. Although the CNC/AgNP-modified PVDF membrane exhibited improved membrane properties, such as high surface roughness, high liquid entry pressure (LEP), and good hydrophobicity, its performance in MD (with artificial seawater as the feed stream) was poor, producing the lowest average water flux (0.179 ± 0.0303 kg/m2 /hr) compared to the unmodified PVDF membrane (0.528 ± 0.0838kg/m2 /hr), mainly due to pore blockage. However, upon spiking the artificial seawater with a monoculture of G. Stearothermophilus, the CNC/AgNP-modified PVDF membrane displayed the most stable water flux while the unmodified PVDF membrane’s water flux decreased by 79.3% over the 24-hour (h) period. This was attributed to the formation of a biofouling layer on the PVDF membrane which was absent on the CNC/AgNP-modified PVDF membrane. The AgNPs on the surface of the membrane afforded minimal bacterial deposition during operation. These results ascertain the possibility of biofouling minimization in MD using CNC-capped AgNPs, contributing to MD’s body of work for its ultimate realization for up-scaling.Item Comparative Analysis of Water Hyacinth Efficiency as Biosorbent and Phyto remediating Plant for Removal of Lead (Pb) Water Contaminants(University of the Witwatersrand, Johannesburg, 2023-08) Nwagbara, Victor Uzoma; Parrini, Francesca; Newete, SolomonOne of the major problems facing the modern society is the issues of water contamination. The ability of aquatic plants to serve as both heavy metal biomarkers and phytoremediators has been advocated for many years. The purpose of this study was therefore to compare the efficacy of water hyacith as a biosorbent and phytoremediating plant for removal of lead from contaminated waters. Dry and fresh water hyacinth biomass were exposed to Pb-contaminated water at different time intervals of 1, 7, 14 and 21 days. The results showed that with the increase of the exposure time, the Pb removal capacity of the plant biomass also increased. The Pb water concentration in day 1 and day 7 were significantly different from those in day 14 and day 21 which were not significantly different from each other. The average Pb removal from the Pb-treated waters for the different time exposure of 1, 7, 14 and 21 days in the fresh water hyacinth biomass were 40%, 56%, 78 % and 79%, respectively, the highest reduction being in the latter. The biomass of the freshwater hyacinth roots had the highest Pd concentration compared to the shoot. On The other hand the average Pb removal by the dry water hyacinth biomass were 78.9 %, 78.5%, 78.3 % and 78.3% for day 1, 7, 14 and 21 respectively, showing no significant difference between the different time series exposure. This suggests the instant adsorption of Pb by the dry plant material from the first day of exposure, after which the active sites for adsorption saturates to accommodate any further Pb ion uptake. There were some plant stresses such as leaf chlorosis, and significant decrease in biomass weight and length of leaf-2 petiole in the lead-treated fresh water hyacinth plants compared to the controls (Pb-free water hyacinth plant). Thus, this study confirms that the largest removal by the dry water hyacinth biomass, occurred in the first day as opposed to the last day (day 21) by the freshwater hyacinth biomass.Item Evaluating the Effectiveness of Green Drop Audit Criterion in Relation to Its Link to Enforcement Protocol in South Africa(University of the Witwatersrand, Johannesburg, 2022-08) Tshongweni, Olwethu Lenox; Tutu, Hlanganani; Richards, Heidi L.The Green and Blue Drop programs are incentive-based regulatory systems based on the Department of Water and Sanitation's (DWS) realization that rewarding positive behaviour is more efficient and effective than penalizing undesirable behaviour. The Green Drop was developed for the Wastewater Quality Management Regulation certification program. In contrast, the Blue Drop was developed for the certification program for the Drinking Water Quality Management Regulation (Burgess, 2021). Most municipalities have accepted them and have raised awareness about the need for better efficiency in the wastewater sector. The Sand River, in Polokwane wastewater treatment works (WWTWs), was chosen as the research area for this study. This particular river was selected based on the premise of continuous non-compliance of the wastewater treatment plant and the resulting pressure it puts on the Sand River by compromising its quality, with the DWS not having a successful way of regulating and enforcing the water user to abide by the rules of the license that has been issued. This study aims to evaluate the effectiveness of the Green Drop Program audits and assessments about their link to the regulatory system within the DWS. Additionally, a risk assessment and cumulative risk rating are used to assess wastewater discharge into the Sand River in the Limpopo Province. Based on the observation made during the study, it appears that within the DWS organizational arrangements, the lack of coordination among the sectors (compliance monitoring, water quality management, the green drop program, and enforcement), lack of accountability, and the regulatory requirement of cooperation within DWS sectors have hindered implementation. Some of the non-compliance factors may be due to the misuse of funds meant for infrastructure development and difficulties relating to capacity, procurement, and management of the WWTWs. Moreover, DWS's absence of interactive data management systems and business processes contributes to non-compliance. The Polokwane WWTW, directly linked to the Sand River, is overloaded and needs to comply with the Water Use Licence (WUL) conditions. For example, the 21 August 2022, this facility was found to be non-compliant by 69.01%, collectively with administration and technical conditions of the WUL issued to the facility (DWS, 2022c). In addition, this investigation discovered that the Polokwane facility, which has been operating outside of regulations for the past four years, therefore, as calculated in equation 7 could be responsible for 72.3% of the hazards to people's health, the quality of the river's water, and the aquatic ecosystem life in the Sand River in a single month. As much as some municipalities do not perform according to the desired standards, there have been a few noticeable, well-performing ones reported in the green drop report released in 2022. These include Langebaan WWTW (90%), Riebeek Valley WWTW (97%), Gansevallei WWTW (84%), and Wellington WWTW (95%), and this illustrates that the Green Drop Certification is achievable if the municipalities follow and adhere to the Water Use Authorization (WUA) issued them (DWS, 2022b). The DWS must integrate the internal structures or link sectors responsible for monitoring and regulating municipal water service facilities and incentivize performing facilities to improve their performance. Additionally, facilities with minor compliance issues, such as water quality, must be referred to the Water Quality Management (WQM) unit for further investigation and recommendations. However, those non-compliances of authorized wastewater treatment facilities that require regulatory attention must be referred to the compliance monitoring sector through the system for compliance monitoring. Lastly, those facilities that are not authorized must be directed to enforcement for further action. Therefore, using the Integrated Regulatory Information System (IRIS) as the umbrella body for both database and work-based information has an imperative role that can curb some of the issues faced by the DWS. Standard operating procedures (SOPs) should guide all interactions between these systems.Item Tailored Fabrication of MXene/Chitosan Nanocomposites as Efficient Adsorbents for Heavy Metals Removal from Wastewater(University of the Witwatersrand, Johannesburg, 2023-08) Ibrahim, Yassmin Ahmed Ismail; Eid, Kamel; Ozoemena, Kenneth IkechukwuMXene (Ti3C2Tx) has been extensively utilized in water purification systems, including toxic metal ions removal, owing to the unique layered structure and abundant oxygen surface groups. However, challenges such as aggregation and solubility of Ti3C2Tx nanosheets in water have prompted the need for innovative strategies. In this study, we introduce a i3C2Tx-incorporated chitosan matrix (MX/CS) adsorbent designed to address solubility concerns during water treatment. MX/CS adsorbents are tested towards the capture of “cadmium” (Cd 2+) and “Zinc” (Zn2+) ions in aqueous solutions at varied pH values (i.e., acid, neutral and alkaline), initial ions concentrations (25, 50 and 100 ppm), and varied Ti3C2Tx loading (i.e., 1, 5 and 10), to study the optimization adsorption parameters. In addition, the Ti3C2Tx nanosheets were activated/alkalinized at ratio (2:1, i.e., 2MX:OH/CS), where more negative-ions sites are provided, thus, enhancing the preferential sorption for heavy metal ions in terms of high adsorption capacities, and kinetics than the non-activated samples (MX-10/CS). Freundlich isotherms are predominated for the Cd2+ and Zn2+ ions adsorption on both adsorbents. A selectivity study reveals that Zn2+ ions got adsorbed faster on the adsorbents than Cd2+ ions because of its low atomic radii and electronegativity. Finally, the adsorbents will be generated and prepared for additional adsorption cycles to test their stability. The second part of this work is to present the novel fabrication of multifunctional hydrophobic polymeric foam MX nanocomposites for large-scale ultrafast wastewater treatment. Likewise, the foam nanocomposite will be tested for the adoption of multi-ions solution over wide pH rage to demonstrate the applicability of the novel adsorbent for large-scale applications. Overall, this research contributes to the advancement of water treatment technologies by enhancing the stability of MXene-based adsorbents and introducing an innovative fabrication method for hydrophobic polymeric foam MX nanocomposites. The outcomes demonstrate the applicability of these novel adsorbents for efficient and scalable water purification solutions.Item Inclusion of nano-silver compounds in RO membranes as solutions to fouling by microbes and natural organic matter during seawater desalination(University of the Witwatersrand, Johannesburg, 2023-08) Nchoe, Obakeng Boikanyo; Moloto, Nosipho; Sikhwivhilu, Keneiloe; Tetyana, PhumlaniThe access to safe and potable water has become a salient discussion for governments across the globe. This is due to pronounced levels of the decline in volumes of available freshwater. Attributions to this phenomenon are mainly climate change, eutrophication, discharge of untreated effluent, heightened irrigation, and industrialization. Currently exploited freshwater sources are rivers, lakes, dams, glaciers, and aquifers. However, inconsistent rainfall patterns have rendered some of these sources as ‘stressed’, which is exacerbated by exponential population growth and misallocation of available freshwater. In hindsight, seawater was identified as a possible source of potable water. However, the high levels of salinity and miscellaneous contaminants (i.e., pathogens and natural organic matter) necessitates treatment of seawater prior its usage. Therefore, the purpose of this work is to develop rugged polyamide thin film nanocomposite (TFN) reverse osmosis (RO) membranes with antifouling properties for seawater desalination. TFN were fabricated by the inclusion of silver-based (i.e., silver sulfide) nanoparticles during interfacial polymerization of the polyamide active layer. Silver compounds are known to have superior antibacterial and photocatalytic properties, due to plasmonic and photo absorption properties. For this reason, silver oxide (Ag2O), silver sulfide (Ag2S), and silver chloride (AgCl) nanoparticles (NPs) were colloidally synthesized. These were then characterized and evaluated in photocatalytic and antibacterial applications. Cytotoxicity studies were also done to determine which of these NPs pose less risk to human health. The consolidation of data from these applications advised which of these NPs would be suitable for incorporation into the polyamide layer to produce fouling resistant TFN. Microscopic analysis depicted well-defined shapes, with average sizes of 23.0±5.7 (Ag2O), 30.6±7.4 (Ag2S), and 10.6±7.2 nm (AgCl). X-ray diffraction determined Ag2O, Ag2S, and AgCl NPs to have cubic, monoclinic, and cubic lattices, respectively. Optical spectroscopy determined Ag2O, Ag2S, and AgCl NPs to have band gap energies of 2.97, 3.11, and 3.05 eV, respectively. These observations inferred that crystalline NPs that exhibit surface plasmon resonance (SPR) in the visible region were successfully synthesized. SPR is a desired characteristic for photocatalysts, and indeed Ag2O, Ag2S, and AgCl NPs achieved humic acid degradation (HA) efficiencies of 86.2, 88.1, and 76.5%, respectively. In antibacterial studies, the broth micro-dilution method indicated that the minimum inhibitory concentration (MIC) values against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) for Ag2O, Ag2S and AgCl NPs were 0.03125, 0.125, and 0.125 mg/mL, respectively. The well-diffusion tests showed that Ag2O NPs had the largest zones of inhibition (ZOI), followed by Ag2S, then AgCl NPs. These observations demonstrated the concentration-dependent mitigation of bacterial cell proliferation. The NPs were further tested for cytotoxicity against human embryotic kidney 293 (HEK 293) cells. It was found that the cytotoxic concentration that rendered 50 % viability (CC50) were 0.0302, 0.3606 and 0.3419, and were obtained for Ag2O, Ag2S and AgCl NPs, respectively. This data implied that Ag2O NPs were the most toxic, while Ag2S and AgCl NPs were least toxic. In light of the above, Ag2S NPs were selected to be incorporated into TFN RO membranes. TFN RO membranes were fabricated by the addition of three different concentrations of Ag2S NPs in the aqueous phase to form the active polyamide (PA) layer on a polysulphone (PSF) support, namely 20, 30, and 50 mg. Fourier transform infrared (FTIR) spectroscopy detected vibrational peaks at 1659 cm-1 (amide I C=O stretch), 1542 cm-1 (amide II C-N stretch) 1481 cm-1 (C-H bend), 1385 cm-1 (C-O stretch), 1242 cm-1 (C-N stretch), and 779cm-1 (aromatic C-H and C=C wagging). The presence of aromatic and amide functional groups corroborated the formation of the TFN active layer, which is responsible for RO filtration of dissolved ions in water. Moreover, atomic force microscopy (AFM) revealed that average surface roughness decreased with increased Ag2S NP loading. TFN loaded with 20, 30, and 50 mg Ag2S NPs recorded water contact angles (WCA) of 54.1, 45.4, and 43.3°, respectively. The WCA of thin film composite membranes (TFC) without Ag2S NPs was recorded to be 73.5°. This demonstrated that the inclusion of Ag2S NPs increased surface hydrophilicity. In addition, salt rejection and water flux were higher for 30 mg loaded TFN (98 % and 32.7 L/m2h) compared to those of TFC (97% and 24.8 L/m2h). The bacterial growth inhibition was observed to be significantly high for 30 mg loaded TFN (80 %) compared to that of TFC (38 %). These observations indicate that the inclusion of Ag2S NPs significantly enhanced the performance of RO membranes and cost effectiveness of desalination.Item Water innovation and the circular economy in special economic zones in South Africa(University of the Witwatersrand, Johannesburg, 2022) Bedessy, Kiara; Soumonni, DiranIn light of the planned economic recovery identified by the South African government, the applicability of various mechanisms, principles and theories which enable economic development should be considered, particularly in the context of growing urbanisation and water scarcity challenges. The first mechanism considered in this study relates to the use of special economic zones to drive industrial growth and as a mechanism of attracting foreign direct investment. The second mechanism relates to the adoption of alternative economic models such as the circular economy (CE) which addresses both economic development and resource challenges. The third mechanism relates to expedition and exploration of technologies aligned to the current technological revolution which is information, communication and technology (ICT) based and is expected to result in a new social and economic paradigm or techno-economic paradigm (TEP). The final mechanism for economic development is related to the promotion of all types of innovation which historically have been linked to economic development. This research report explores these selected recovery mechanisms with a focus on ICT-led circular water innovation and its impact on economic development and developing a green economic paradigm. There is a need to understand the meaning and impact of the CE on economic development in South Africa in light of the economic recovery considerations and the constraints related to water. CE innovation, in all categories, is important given the positive relationship innovation has with economic development and the opportunity to use all types of innovation and not just original innovation as a developing country. In addition, a better understanding of the current global technological revolution is required in order to determine its applicability for the South African context, particularly given its expected culmination into a green techno-economic paradigm which will have a beneficial societal and economic impact. The role of SEZs as a showcase on how circular economy innovation and water technologies have been adopted in an environmentally and economically beneficial manner will assist in providing practicality to the study. Seven of the ten SEZs in South Africa were used as a sample with qualitative, semi-structured interviews conducted with SEZ representatives and water specialists. All interviewees were familiar with the topics of water, innovation and the circular economy in SEZs. Interviews were supplemented with document analyses of water innovation in industries in South Africa. The major findings of this study are that water innovation in the circular economy has a positive environmental impact through the reduction of pollution and improved water security. The socio-economic impact primarily relates to job creation both in new industries that are emerging from offtakes and new service models and there is potential for green jobs. There are many types of ICT enabled water innovation adopted within the SEZs with water monitors being the most prevalent. From a techno-economic paradigm perspective when measured against the TEP criteria of low cost, opportunities for entrepreneurship and organisational change, only the criterion of cost reduction has been observed in this study with entrepreneurship and organisational change lagging. However, the potential exists to create clusters of innovation which include water monitors, robotics and data analytics as a cluster or desalination, renewable energy (hydro and solar power) and low-cost membranes as another cluster. These clusters when coupled with government support through entrepreneurship incubation and policy incentives, have the potential to hasten the technological revolution through increased innovation, adoption and diffusion of technologies. This is however a collaborative effort wherein both the private and public sector need to work together to build an ICT enabled circular economy to create new green growth and economic developmentItem Adoption of constructed wetlands in informal settlement(University of the Witwatersrand, Johannesburg, 2023-08) Jetha, Hemal Girish; Thatcher, AndrewThe study aimed to assess the effectiveness of constructed wetlands as a solution to greywater treatment in the context of water use in Setswetla, Alexandra, an informal settlement in Johannesburg that is characterized by makeshift housing, poor sanitation, and a lack of proper greywater treatment facilities. The lack of such facilities has resulted in the disposal of contaminated greywater across the settlement, which poses serious health risks to its people. The installation of constructed wetlands was considered a feasible solution, given that they can be built without displacing the population. However, the successful implementation of this solution would require a change in the behaviour of the population regarding greywater disposal. Therefore, this study aimed to evaluate the adoption of constructed wetlands which were installed in one portion of Setswetla, Silvertown to gain a better understanding of whether installing constructed wetlands helps with greywater disposal. The study also sought to determine if there was any difference in water use behaviour before and after the installation of the constructed wetlands. The research revealed that there was not much behaviour change pre- and post-installation of the constructed wetlands. Some of the significant differences found was that more people reported that they do collect the same amount of water during both summer and winter. More participants indicated that they do not collect the same amount of water during the week and weekend. Less participants reported that they could collect water during the day and night.Item Use of Multispectral Satellite Imagery to Monitor the Decant Pond of Tailings Dams(University of the Witwatersrand, Johannesburg, 2023-08) O’Donovan, Christopher Galen; Adam, Elhadi; Torres-Cruz, AlbertoTailings dam failures, such as the Jagersfontein failure in the Free State province and the Fundão and Feijão failures in Brazil, have brought into question the ability of the mining industry to operate safely, threatening its social license. To improve the safety of tailings dams, leading indicators of dam safety should be monitored. The location and historical behaviour of the tailings decant pond provides insight into several such leading indicators and can be used as a proxy to flag potential construction issues. This work investigates the use of public multispectral data collected by the Sentinel-2 satellite mission to monitor the supernatant tailings dam decant pond. This is achieved by leveraging the cloud-based Google Earth Engine platform and open-source GIS tools. Sentinel-2 acquires visible and near infrared spectrum data with a spatial resolution of 10 m and a revisit time of 5 days. Pond data is obtained by visual assessment and automated thresholding of Sentinel-2 imagery. Thresholds of near-infrared (NIR) reflectance and the normalised difference water index (NDWI) obtained by a least square error analysis are investigated. Implementation of the method at three South African tailings dams, constituting four decant ponds, illustrates the capabilities and limitations of Sentinel-2 imagery. High spatial resolution (<5 m) multispectral satellite imagery and natural colour aerial orthophotos (<0.25 m) serve as reference data. Visually assessed Sentinel-2 pond data presented a bias towards slight over estimation of the pond area compared to reference data. Other leading indicators did not show systematic bias across all sites. In general, the deviation between Sentinel-2 and the reference measurements was high, indicating that Sentinel-2 imagery should be used with caution for measurements critical to dam safety. Site-specific thresholds of NIR and NDWI indicated that automated thresholding of the NDWI is superior to NIR reflectance alone. It is shown that Sentinel-2 timeseries imagery can be used in tailings dam monitoring to supplement existing construction surveillance frameworks and provide historical pond data in the absence of such information.Item A comprehensive analysis of urban river pollution – the case of the Hennops river in Gauteng Province, South Africa(University of the Witwatersrand, Johannesburg, 2023) Letseka, Thabiso Esaiah; Chimuka, L.; Richards, L.H.The water quality of rivers is declining at an alarming rate due to pollution from anthropogenic activities associated with urbanization. To ensure ecological restoration and management of rivers, engaging in pollutant source apportionment, evaluation, and monitoring of water quality is of great significance. The study delivers a comprehensive assessment of the state of pollution in the Hennops river catchment facing pollution threats from rapid urbanization. The water quality assessment of the Hennops river was performed through chemical, microbiological, microplastics analysis and ecotoxicological approaches, spanning from upstream region in Tembisa to the downstream Hartbeespoort Dam. Standard methods were employed to assess physiochemical properties of the river’s water. Electrical conductivity and pH fell within the accepted criteria based on the standard water quality guidelines. However dissolved oxygen (DO) levels were below acceptable limits, ranging from 1.53 mg L-1 to 6.47 mg L-1. This signifies a substantial demand for oxygen in the river, likely due to the discharge of sewage from leaking pipes and wastewater treatment plants. This sewage introduces a high volume of organic matter, leading to an increased oxygen demand in the water. Microbiological pollution indicators were employed to assess the microbial water quality of the river. The study's findings revealed elevated bacterial counts, with Escherichia Coli (E. coli) reaching up to 2 250 cfu mL-1 upstream and decreasing to 30 cfu mL-1 downstream. These high counts suggest faecal contamination in the river water. Similar trends were observed with total coliform counts, high coliform counts 170 000 cfu mL-1 in the upstream which remained detectable even downstream and beyond the Hartbeespoort Dam, despite the dilution effects within the dam. The dam was identified as the primary repository for pollution originating upstream. Grab sampling followed by solid phase extraction (SPE) and the passive sampling using a Polar Organic Integrative Sampler (POCIS), were employed as sample preparation methods for preconcentration of methocarbamol, etilefrine, nevirapine, carbamazepine and venlafaxine from river water with subsequent analysis on Liquid Chromatography coupled to quadrupole time of flight mass spectrometry. Both methods yielded good figures of merit with limits of quantification in the range of 0.57 to 2.12 ng mL-1 for POCIS and 0.19 to 1.82 ng mL-1 for SPE. The compounds were detected in the water but at low levels (µgL-1 ), with detected concentrations of carbamazepine in the range 0.62 ng mL-1 – 0.32 ng mL-1 , methocarbamol detected in the range 0.11 ng mL-1 - 0.14 ng mL-1 and venlafaxine 0.50 ng mL-1 – 0.44 ng mL-1 using POCIS. The detected concentrations using SPE were in the range 0.13 ng mL-1 – 0.19 ng mL-1 for carbamazepine, while nevirapine and venlafaxine were detected although below limit of quantification. This underscores the advantage of using passive samplers, which enable the detection of fluctuating contaminant concentrations over time, in contrast to the one-time measurements obtained through grab sampling. In the case of microplastics in the water and sediment samples, five polymer types were identified: polyethylene (PE), polypropylene (PP), high density polyethylene, (HDPE), polyester and polystyrene. The predominant polymer type in surface water was PE (48.6 %), and that in sediment was PP (52.7 %). PE and PP were the most abundant polymer types in both phases, and as these also the leading polymers in plastics production. 80% of the identified microplastics were found to be fibre with most dominant sizes of 1-2 mm for sediments and 0.5-1 mm in water samples. The conducted tests deemed the river water not suitable for irrigation, drinking or recreational purposes and not capable to support aquatic life.Item Benchmarking the Technical Efficiency of South African Municipal Water Utilities: A Double-Bootstrap Dea Approach(University of the Witwatersrand, Johannesburg, 2023-03) Matutu, Amanda; Dikgang, JohaneEfficiency enhancement in the water sector can help to optimise the use of available resources and mitigate the impact of climate change on water resources, while promoting sustainable water usage. Ultimately, this can lead to cost savings that may be channelled into enhancing service delivery and expanding access to water. Benchmarking is considered a useful method for improving water sector efficiency. The production frontier approach is the most commonly used technique for benchmarking, which can be computed using either non-parametric techniques, including data envelopment analysis (DEA), or parametric methods, including stochastic frontier analysis (SFA). A review of the literature reveals that DEA has become the most frequently used method for efficiency analysis in the water sector. Though a predictable approach, the DEA method may be influenced by measurement errors and anomalies, and it cannot be used to draw statistical conclusions. To address this problem, the double-bootstrap DEA technique was introduced, which permits statistical inference in DEA models. This technique helps the researcher to estimate efficiency scores that have been corrected for bias, and also identifies the factors that influence efficiency. For these reasons, this research employs double-bootstrap DEA to evaluate the efficiency scores of municipal water utilities in the South African water sector. The truncated double-bootstrap regression outcomes show that water consumer debt, consuming units receiving free water, and the effects of climate change (such as temperature variation and altered rainfall patterns) all impact the relative efficiencies of municipal water utilities. The results indicate notable distinctions in rankings and efficiency scores between the double-bootstrap DEA model and the traditional DEA model for both urban and rural municipal water utilities. Using the regression model, this research discovered that water consumer debt and consuming units receiving free water are significant factors influencing the efficiency of urban and rural municipal water utilities. These findings raise concerns about the prospects of South African municipal water utilities, particularly their ability to strike a balance between supporting indigent households and securing revenue for maintenance and future water infrastructure development, as well as efficiently managing water consumer debt and addressing the effects of climate change to deliver desired results consistently and sustainably.