School of Computer Science and Applied Mathematics (ETDs)

Permanent URI for this communityhttps://hdl.handle.net/10539/38004

Browse

Search Results

Now showing 1 - 10 of 36
  • Item
    Flood Susceptibility Modeling in the uMhlatuzana River Catchment using Computer Vision-Based Deep Learning Techniques
    (University of the Witwatersrand, Johannesburg, 2024-10) Chirindza, Jonas; Ajoodha, Ritesh; Knight, Jasper
    In this study, covolutional neural networks (CNN) models are employed for flood susceptibility modeling in the uMhalatuzana River catchment in KwaZulu-Natal, South Africa. The CNN models, including 1D-CNN, 2D-CNN, and 3D-CNN, pro-vide a detailed assessment of flood vulnerability in the region. The models use di- verse spatial information, such as topography, land use, and hydrological features, to estimate the likelihood of flooding in different areas of the catchment. The flood susceptibility maps within the uMhalatuzana River catchment, classified into five risk zones namely, ‘very low’, ‘low’, ‘moderate’, ‘high’ and ‘very high’ susceptibility zone, serve as proactive instruments for risk mitigation and disaster management. The 1D-CNN model displays strong overall performance in flood susceptibility modeling, evident in key metrics such as accuracy, precision, recall, area under curve (AUC) score, and F1-score. The results suggest that the model effectively captures patterns in the input data, emphasizing its potential for flood susceptibility modeling. Moreover, the 2D-CNN model outperforms the 1D-CNN, achieving higher values when evaluated using various performance metrics. Finally, the 3D-CNN model outperformed both the 1D-CNN and 2D-CNN, emphasizing its predictive abilities in flood susceptibility modelling. The flood susceptibility maps produced by the 1D-CNN model, shows that most of the study area exhibits very low flood susceptibility (96.4%), with localized areas of higher susceptibility, particularly in the very high-risk category (2.53%). The 2D CNN model demonstrates a more diverse risk distribution, with a substantial portion having very low susceptibility (74.19%) and significant areas of higher risk, notably in the very high-risk category (10.93%). The 3D-CNN model emphasizes a spatial pattern where a large portion has very low susceptibility (84.10%), but with a concentration of high and very high-risk areas, comprising 12.34% of the total area. Finally, the consistent identification of higher risk susceptibility areas enhances the robustness of the assessments. The models’ high accuracy and detailed risk assessments provide valuable tools for decision-makers, urban planners, and emergency response teams in the uMhalatuzana River catchment. The precision of the models facilitates informed strategies for flood risk management, including targeted interventions such as improved drainage systems and early warning systems.
  • Item
    Envisioning the Future of Fashion: The Creation And Application Of Diverse Body Pose Datasets for Real-World Virtual Try-On
    (University of the Witwatersrand, Johannesburg, 2024-08) Molefe, Molefe Reabetsoe-Phenyo; Klein, Richard
    Fashion presents an opportunity for research methods to unite machine learning concepts with e-commerce to meet the growing demands of consumers. A recent development in intelligent fashion research envisions how individuals might appear in different clothes based on their selection, a process known as “virtual try-on”. Our research introduces a novel dataset that ensures multi-view consistency, facilitating the effective warping and synthesis of clothing onto individuals from any given perspective or pose. This addresses a significant shortfall in existing datasets, which struggle to recognise various views, thus limiting the versatility of virtual try-on. By fine-tuning state-of-the-art architectures on our dataset, we expand the utility of virtual try-on, making them more adaptable and robust across a diverse range of scenarios. A noteworthy additional advantage of our dataset is its capacity to facilitate 3D scene reconstruction. This capability arises from utilising a sparse collection of images captured from multiple angles, which, while primarily aimed at enriching 2D virtual try-on, inadvertently supports the simulation of 3D environments. This enhancement not only broadens the practical applications of virtual try-on in the real-world but also advances the field by demonstrating a novel application of deep learning within the fashion industry, enabling more realistic and comprehensive virtual try-on experiences. Therefore, our work heralds a novel dataset and approach for virtually synthesising clothing in an accessible way for real-world scenarios.
  • Thumbnail Image
    Item
    Double-diffusive convection in rotating fluids under gravity modulation
    (University of the Witwatersrand, Johannesburg, 2024-09) Mathunyane, Alfred Ntobeng; Duba, C. Thama; Mason, D.P.
    This study employs the method of normal modes and linear stability analysis to investigate double-diffusive convection in a horizontally layered, rotating fluid, specifically focusing on its application to oceanic dynamics. Double diffusive convection arises when opposing gradients of salinity and temperature interact within a fluid, a phenomenon known as thermohaline convection, and it is crucial for the understanding of ocean circulation and its role in climate change. With the increasing mass of water due to glaciers melting, fluid pressure variations occur, leading to slight fluctuations in gravity. We conduct both stationary and oscillatory stability analyses to determine the onset of double-diffusive convection under gravity modulation. Our analysis reveals that time-dependent periodic modulation of gravitational fields can stabilize or destabilize thermohaline convection for both stationary and oscillatory convection, with amplitude stabilizing and frequency destabilizing. The wavenumber in the y- direction also affects convection in the equatorial regions. This wavenumber exhibits destabilizing effects for large values and stabilizing effects for small values for both stationary and oscillatory convection. Rotation along with gravity modulation tends to destabilize the system for both stationary and oscillatory convection. The key difference between stationary and oscillatory convection is that oscillatory convection exhibits large values of the Rayleigh number, thus susceptible to overstability while stationary convection tends to have relatively smaller Rayleigh numbers and thus more stable. This research provides insights into the complex interplay between gravity modulation and thermohaline convection, contributing to our understanding of ocean dynamics and their implications for climate change.
  • Thumbnail Image
    Item
    BiCoRec: Bias-Mitigated Context-Aware Sequential Recommendation Model
    (University of the Witwatersrand, Johannesburg, 2024-09) Muthivhi, Mufhumudzi; van Zyl, Terence; Bau, Hairong
    Sequential recommendation models aim to learn from users’ evolving preferences. However, current state-of-the-art models suffer from an inherent popularity bias. This study developed a novel framework, BiCoRec, that adaptively accommodates users’ changing preferences for popular and niche items. Our approach leverages a co-attention mechanism to obtain a popularity-weighted user sequence representation, facilitating more accurate predictions. We then present a new training scheme that learns from future preferences using a consistency loss function. The analysis of the experimental results shows that our approach is 7% more capable of uncovering the most relevant items.
  • Thumbnail Image
    Item
    Developing a Bayesian Network Model to Predict Students’ Performance Based on the Analysis of their Higher Education Trajectory
    (University of the Witwatersrand, Johannesburg, 2024-08) Ramaano, Thabo Victor; Jadhav, Ashwini; Ajoodha, Ritesh
    The Admission Point Score (APS) metric, utilised as a response to admit prospective students for an academic course, may appear effective in determining student success. In reality, almost 50% of students admitted to a science programme in a higher education institution failed to meet all the requirements necessary to complete the programme during the period of 2008 and 2015. This had a direct impact on the overall graduation throughput. Thus, the focus of this research was geared towards the adoption of a probabilistic graphical approach to advocate its mechanism as a viable alternative to the APS metric when determining student success trajectories at a higher education level. The purpose of this approach was to provide higher education institutions with a system to monitor students’ academic performance en-route to graduation from a probabilistic and graphical point of view. This research employed a probability distribution distance metric to ascertain how close the learned models were to the true model for varying sample sizes. The significance of these results addressed the need for knowledge discovery of dependencies that existed between the students’ module results in a higher education trajectory that spans three years.
  • Thumbnail Image
    Item
    3D Human pose estimation using geometric self-supervision with temporal methods
    (University of the Witwatersrand, Johannesburg, 2024-09) Bau, Nandi; Klein, Richard
    This dissertation explores the enhancement of 3D human pose estimation (HPE) through self-supervised learning methods that reduce reliance on heavily annotated datasets. Recognising the limitations of data acquired in controlled lab settings, the research investigates the potential of geometric self-supervision combined with temporal information to improve model performance in real-world scenarios. A Temporal Dilated Convolutional Network (TDCN) model, employing Kalman filter post-processing, is proposed and evaluated on both ground-truth and in-the-wild data from the Human3.6M dataset. The results demonstrate a competitive Mean Per Joint Position Error (MPJPE) of 62.09mm on unseen data, indicating a promising direction for self-supervised learning in 3D HPE and suggesting a viable pathway towards reducing the gap with fully supervised methods. This study underscores the value of self-supervised temporal dynamics in advancing pose estimation techniques, potentially making them more accessible and broadly applicable in real-world applications.
  • Thumbnail Image
    Item
    Symmetry reductions and approximate solutions for heat transfer in slabs and extended surfaces
    (University of the Witwatersrand, Johannesburg, 2023-06) Nkwanazana, Daniel Mpho; Moitsheki, Raseelo Joel
    In this study we analyse heat transfer models prescribed by reaction-diffusion equations. The focus and interest throughout the work is on models for heat transfer in solid slabs (hot bodies) and extended surface. Different phenomena of interest are heat transfer in slabs and through fins of different shapes and profiles. Furthermore, thermal conductivity and heat transfer coefficients are temperature dependent. As a result, the energy balance equations that are produced are nonlinear. Using the theory of Lie symmetry analysis of differential equations, we endeavor to construct exact solutions for these nonlinear models. We will employ a number of symmetry techniques such as the classical Lie point symmetry methods, the nonclassical symmetry, nonlocal and nonclassical potential symmetry approach to construct the group-invariant solutions. In order to identify the forms of the heat source term that appear in the considered equation for which the principal Lie algebra (PLA) is extended by one element, we first perform preliminary group classification of the transient state problem. Also, we consider the direct group classification method. Invariant solutions are constructed after some reductions have been performed. One-dimensional Differential Transform Method (1D DTM) will be used when it is impossible to determine an exact solution. The 1D DTM has been benchmarked using some exact solutions. To solve the transient/unsteady problem, we use the two-dimensional Differential Transform Method (2D DTM). Effects of parameters appearing in the equations on the temperature distribution will be studied.
  • Thumbnail Image
    Item
    Detecting and Understanding COVID-19 Misclassifications: A Deep Learning and Explainable AI Approach
    (University of the Witwatersrand, Johannesburg, 2023-08) Mandindi, Nkcubeko Umzubongile Siphamandla; Vadapalli, Hima Bindu
    Interstitial Lung Disease (IDL) is a catch-all term for over 200 chronic lung diseases. These diseases are distinguished by lung tissue inflammation (Pulmonary fibrosis). They are histologically heterogeneous dis eases with inconsistent microscopic appearances, but they have clinical manifestations similar to other lung disorders. The similarities in symptoms of these diseases make differential diagnosis difficult and may lead to COVID-19 misdiagnosis with various types of IDLs. Be cause the turnaround time is shorter and more sensitive for diagnosis, imaging technology has been mentioned as a critical detection method in combating the prevalence of COVID-19. The aim of this research is to investigate existing deep learning architectures for the aforementioned task, as well as incorporate evaluation modules to determine where and why misclassification occurred. In this study, three widely used deep learning architectures, ResNet-50, VGG-19, and CoroNet, were evaluated for detecting COVID-19 from other IDLs (bacterial pneumonia, nor mal (healthy), viral pneumonia, and tuberculosis). The baseline results demonstrate the effectivities of Coronet having a classification performance of 84.02% for accuracy, specificity of 89.87%, a sensitivity of 70.97%. Recall 84.12%, and F1 score of 0.84. The results further emphasize the effectiveness of transfer learning using pre-trained domain-specific architectures, resulting in fewer learnable parameters. The proposed work used Integrated Gradients (IG), an Explainable AI technique that uses saliency maps to observe pixel feature importances, to understand mis classifications. This refers to visually prominent features in input im ages that were used by the model to make predictions. As a result, the proposed work envisions future research directions for improved classi fication through misclassification understanding.
  • Thumbnail Image
    Item
    Creating an adaptive collaborative playstyle-aware companion agent
    (University of the Witwatersrand, Johannesburg, 2023-09) Arendse, Lindsay John; Rosman, Benjamin
    Companion characters in video games play a unique part in enriching player experience. Companion agents support the player as an ally or sidekick and would typically help the player by providing hints, resources, or even fight along-side the human player. Players often adopt a certain approach or strategy, referred to as a playstyle, whilst playing video games. Players do not only approach challenges in games differently, but also play games differently based on what they find rewarding. Companion agent characters thus have an important role to play by assisting the player in a way which aligns with their playstyle. Existing companion agent approaches fall short and adversely affect the collaborative experience when the companion agent is not able to assist the human player in a manner consistent with their playstyle. Furthermore, if the companion agent cannot assist in real time, player engagement levels are lowered since the player will need to wait for the agent to compute its action - leading to a frustrating player experience. We therefore present a framework for creating companion agents that are adaptive such that they respond in real time with actions that align with the player’s playstyle. Companion agents able to do so are what we refer to as playstyle-aware. Creating a playstyle-aware adaptive agent firstly requires a mechanism for correctly classifying or identifying the player style, before attempting to assist the player with a given task. We present a method which can enable the real time in-game playstyle classification of players. We contribute a hybrid probabilistic supervised learning framework, using Bayesian Inference informed by a K-Nearest Neighbours based likelihood, that is able to classify players in real time at every step within a given game level using only the latest player action or state observation. We empirically evaluate our hybrid classifier against existing work using MiniDungeons, a common benchmark game domain. We further evaluate our approach using real player data from the game Super Mario Bros. We out perform our comparative study and our results highlight the success of our framework in identifying playstyles in a complex human player setting. The second problem we explore is the problem of assisting the identified playstyle with a suitable action. We formally define this as the ‘Learning to Assist’ problem, where given a set of companion agent policies, we aim to determine the policy which best complements the observed playstyle. An action is complementary such that it aligns with the goal of the playstyle. We extend MiniDungeons into a two-player game called Collaborative MiniDungeons which we use to evaluate our companion agent against several comparative baselines. The results from this experiment highlights that companion agents which are able to adapt and assist different playstyles on average bring about a greater player experience when using a playstyle specific reward function as a proxy for what the players find rewarding. In this way we present an approach for creating adaptive companion agents which are playstyle-aware and able to collaborate with players in real time.
  • Thumbnail Image
    Item
    Procedural Content Generation for video game levels with human advice
    (University of the Witwatersrand, Johannesburg, 2023-07) Raal, Nicholas Oliver; James, Steven
    Video gaming is an extremely popular form of entertainment around the world and new video game releases are constantly being showcased. One issue with the video gaming industry is that game developers require a large amount of time to develop new content. A research field that can help with this is procedural content generation (PCG) which allows for an infinite number of video game levels to be generated based on the parameters provided. Many of the methods found in literature can generate content reliably that adhere to quantifiable characteristics such as playability, solvability and difficulty. These methods do not however, take into account the aesthetics of the level which is the parameter that makes them more reasonable levels for human players. In order to address this issue, we propose a method of incorporating high level human advice into the PCG loop. The method uses pairwise comparisons as a way in which a score can be assigned to a level based on its aesthetics. Using the score along with a feature vector describing each level, an SVR model is trained that will allow for a score to be assigned to unseen video game levels. This predicted score is used as an additional fitness function of a multi objective genetic algorithm (GA) and can be optimised as a standard fitness function would. We test the proposed method on two 2D platformer video games, Maze and Super Mario Bros (SMB), and our results show that the proposed method can successfully be used to generate levels with a bias towards the human preferred aesthetical features, whilst still adhering to standard video game characteristics such as solvability. We further investigate incorporating multiple inputs from a human at different stages of the PCG life cycle and find that it does improve the proposed method, but further testing is still required. The findings of this research is hopefully going to assist in using PCG in the video game space to create levels that are more aesthetically pleasing to a human player.