School of Physics (ETDs)
Permanent URI for this communityhttps://hdl.handle.net/10539/38019
Browse
Item Broadband beam shaping(University of the Witwatersrand, Johannesburg, 2024-03) Perumal, Leerin Michaela; Forbes, Andrew; Dudley, AngelaLaser beam shaping is a venerable topic that enjoyed an explosion in activity in the late 1990s with the advent of diffractive optics for arbitrary control of coherent fields. Today, the topic is experiencing a resurgence, fueled in part by the emerging power of tailoring light in all its degrees of freedom, so-called structured light, and in part by the versatility of modern day fabrication and implementation tools. Since its development, structured light has become a priceless tool in various applications such as telecommunication, imaging and microscopy, industrial manufacturing, quantum computing, optical trapping and medical treatments, to name a few. With recent advancements in these various applications, broadband beam shaping (creating structured light with many wavelengths) has become topical as it offers an additional degree of freedom for one to manipulate. In this thesis we look at how to generate broadband light using both digital and physical beam shaping optics. In so doing we provide a method to introduce broadband beam shaping into various applications that may benefit from either the compact size of a physical optic or the dynamic ability of a digital.Item Chromatin accessibility changes during early monocyte-to-macrophage differentiation(University of the Witwatersrand, Johannesburg, 2024) Xu, Yi Fan; Meyer, V.; Gentle, N .The differentiation of monocytes into macrophages is a crucial process that enhances the local immune response against infection by recruiting monocytes to local tissues and transforming them into macrophages. The changes in gene expression associated with this process are known to be regulated by various mechanisms, including the chromatin accessibility landscape. Previous in vitro studies have shown that promonocytic THP-1 cells can differentiate into macrophage-like cells following treatment with phorbol 12-myristate 13-acetate (PMA). While previous studies have attempted to track the differentiation process over time, there has been a lack of research specifically focusing on earlier time points. Therefore, in this study, we used various publicly available RNA-seq, ATAC-seq and ChIP-seq datasets to describe the early events involved in monocyte-to-macrophage differentiation, using THP-1 cells treated with 100 ng/ml PMA for 24 hours as the model system. ATAC-seq data were aligned to the reference human genome (GRCh38) using Bowtie2 and chromatin accessibility peaks were identified using HMMRATAC. Differentially accessible chromatin regions (|L2FC| > 2; FDR < 0.05) were identified using DiffBind, and were annotated based on their cis-regulatory features. These included promoter regions (based on the GENCODE v40 annotations of the human genome) and THP-1-specific enhancers (defined as known enhancers within the GeneHancer database with an overlapping, THP-1-specific, H3K27ac mark). These cis-regulatory features were then associated with genes found to be significantly differentially expressed in response to PMA treatment (|L2FC| > 2; p.adj < 0.05), following quantification of gene expression using Salmon and differential gene expression analysis using DESeq2. The results of this study revealed that the early response to PMA in THP-1 cells is linked to changes in both gene expression and chromatin accessibility. These changes in both gene expression and chromatin accessibility were shown to be linked with inflammatory responses and cell migration activities. Although there was only a limited association between changes in gene expression and chromatin accessibility at the 24-hour time point, opening of chromatin at promoter and enhancer regions and increased gene expression was observed for many genes previously reported to be involved in the process of monocyte-to-macrophage differentiation, including CSF1, CSF1R, and IL-1α/β. This suggests that changes in chromatin accessibility at cis-regulatory elements taking place early in the differentiation process drive the changes in gene expression necessary for monocyte-to-macrophage differentiationItem Development of TileCoM firmware and software for the off-detector electronics of the ATLAS Tile Calorimeter at the HL-LHC(University of the Witwatersrand, Johannesburg, 2023-08) Gololo, Mpho Gift Doctor; Argos, Fernando Carrio; Mellado, BruceIn 2010 the LHC started to operate as the energy frontier particle accelerator in the world, situated close to Geneva and 100 m below the French and Swiss border in a circular tunnel of 27 km. The HL-LHC which is an upgrade of the LHC is envisioned to maximize the instantaneous luminosity of L = 1 × 1034 cm−2s −1 by a factor of 5 to fully exploit the physics potential at the energy frontier. During 10 years of operation, an improved TDAQ system architecture will have the capability to accommodate the trigger rates and the amount of data generated from the HL-LHC. TileCal is the ATLAS central hadronic calorimeter, a sampling calorimeter with iron as passive medium and plastic scintillator tiles as active medium. The ATLAS TileCal Phase-II upgrades will prepare the ATLAS experiment for the HL-LHC and includes new requirements in terms of radiation levels, an increase in data bandwidth, and clock distribution. To meet the requirements of the HL-LHC, a completely new readout electronics is designed to support the data acquisition system of TileCal. As part of the new readout electronics, this thesis is focused on the design of the TileCoM and Tile GbE Switch. The Tile GbE Switch PCB is manufactured by two South African companies, Trax Interconnect and Jemstech. The PCBs are fully func tional and have been integrated with new readout electronics. Three main function alities are implemented on the TileCoM in software and firmware implementation as key elements of the TDAQ and DCS of the ATLAS TileCal at the HL-LHC. The TileCoM and Tile GbE Switch are successfully integrated with the ATLAS Phase II TileCal upgrade electronics. This is achieved by successful remote control and monitoring of the ATLAS TileCal Phase-II upgrade electronics. This thesis shows monitoring results based on voltage, current and other parameters.Item Digital toolbox for the generation and detection of vectorial structured light(University of the Witwatersrand, Johannesburg, 2023-06) Singh, Keshaan; Dudley, Angela; Forbes, AndrewLight has been an invaluable tool in the development of the modern world, with the myriad of applications increasing along with our degree of control over it. From the development of coherent light sources, to the shaping of amplitude and phase, this development has not ceased for the past half century. The field of structured light, borne out of the necessity and desire for control over light, has been growing steadily in recent years. In the spatial domain, the control over light’s polarization (i.e., the local planes in which the electric and magnetic fields oscillate) has been the most recent avenue of improvement, providing enhancements to a variety of applications ranging form microscopy and communication to materials processing and metrology. This class of light, commonly referred to as vectorial light, often requires specialised equipment in order for its its creation before its numerous benefits can be exploited. These tools often incur high costs and suffer from limitations relating to the diversity of vectorial light they can create, wavelength dependence and slow refresh rates. This thesis follows the development of a series of digital tools for the versatile generation and analysis of vectorial light using low-cost core technologies which can operate at high rates over a broad wavelength range. We follow the development of the generation tool in the context of its application in generating novel accelerating polarization structures, emulating vectorially apertured optics, generating probes to measure birefringence and chirality and creating synthetic spin dynamics. The development of the analysis tool is explored by investigating its application in performing automated digital Stokes polarimetry measurements, completely characterizing the internal degrees of freedom of arbitrary vectorial light and acting as a polarization and wavelength independent wavefront sensor. We then demonstrate how these tools can be used, in conjunction, to investigate the fundamental invariance of vectorial light to perturbing channels and how this invariance can be exploited in a highly robust novel communication scheme. In addition to demonstrating the applicability and versatility of these vectorial light tools, the applications offered a means to highlight areas for the optimization for the design. This culminated in the ongoing prototyping of versatile, fast, broadband devices which operate stably and have a small physical footprint.Item Feasibility and the facilitation of off-site treatment planning services at Charlotte Maxeke Johannesburg Academic Hospital(University of the Witwatersrand, Johannesburg, 2024) Otten, Joseph Johannes; Ngcezu, SonwabileThe report encapsulates the comprehensive commissioning and validation process undertaken to integrate the Varian Eclipse treatment planning system (TPS) with Elekta Versa HD™linear accelerators, enabling off-site treatment planning services (OTPS). The initiative aimed to enhance the efficiency of treatment planning and expand access to care. The process involved meticulous collection and modelling of beam data from four Versa HD™Linacs within the Eclipse system. Measurements were conducted to characterize the beam properties, including profiles, percent depth dose (PDD) curves, and output factors (OF). A pivotal aspect of the validation was the acquisition and verification of the computed tomography (CT) to electron density curve, which is crucial for accurate dose calculations. The Anisotropic Analytical Algorithm (AAA) was employed for dose calculations, with its accuracy confirmed through point dose measurements and gamma index comparisons. Fine-tuning of multi-leaf collimator (MLC) transmission and dosimetric leaf gap (DLG) parameters was achieved through iterative plan measurements and optimisations. The culmination of the validation process was the end-to-end testing, adhering to the International Atomic Energy Agency (IAEA) audit methodology, utilising CIRS phantoms (Clark et al., 2019). This testing was conducted on the clinical servers, with patient-specific quality assurance results exhibiting gamma pass rates above 90% for distance to agreement (DTA) of 3mm and a dose difference (DD) 3%, indicative of the system’s accuracy. The study demonstrated the feasibility of remote treatment planning for Elekta Linacs using the Varian Eclipse TPS. The rigorous commissioning and validation pro- cess ensured the dosimetric accuracy and quality of the integrated system. The successful validation of the Eclipse TPS for clinical use suggests that this integration could significantly streamline the planning work, potentially alleviating treatment backlogs and enhancing the delivery of care in radiation therapy.Item Hunting dark matter with faint radio halos(University of the Witwatersrand, Johannesburg, 2023-10) Sarkis, Michael David; Beck, GeoffThe nature of Dark Matter (DM), the elusive substance that constitutes a significant amount of the total matter in the universe, remains an unsolved problem in modern physics despite a decades-long search effort. One approach to this problem has been to search for faint emission signatures that are produced indirectly from the DM present in large astrophysical structures, and thus infer properties about theoretical DM models from observational data. In recent years, the results from studies that use this type of indirect search have produced stringent constraints on the most popular DM particle candidate parameter spaces, ruling out swathes of viable DM models. These compelling results have been enabled by the arrival of sophisticated interferometric radio telescopes, which are excellent DM hunters due to their high sensitivity and resolution. In this thesis, we focus on the use of the latest data from the MeerKAT radio interferometry telescope, through the first public release of the MeerKAT Galaxy Cluster Legacy Survey, to search for DM emissions in a set of nearby galaxy clusters. Each step of this process, from the creation of theoretical DM emission models to the statistical analysis of the observational data, has been described in detail in this thesis. With this data, we find an almost universal improvement to results found with corresponding modelling scenarios in the literature. Since this work is among the first to use MeerKAT data in astrophysical DM searches, these results present a strong argument for continued work in this field. Another central focus of this thesis is the accurate modelling of the physical processes involved in the production of the DM-induced radio emissions, as the quality of current radio data requires theoretical models that are sufficiently accurate to describe the emission at such high resolutions. One aspect of the modelling that has lacked this accuracy has been the solution to the diffusion-loss equation, which is a crucial factor in determining indirect DM emissions. A new algorithm for solving this equation, which provides higher accuracy and computational efficiency than previous public methods, has thus been developed and presented in this thesis. These aspects of DM indirect detection study will become ever more important as we approach the inauguration of the Square Kilometre Array (SKA), which will provide data with unprecedented potential with which to continue the hunt for DM.Item Implementation of the DAQ software for the ALTI module in the ATLAS TileCal and the search for new physics in the four lepton final state(University of the Witwatersrand, Johannesburg, 2023-06) Tlou, Humphry Sijiye; Wilkens, Henric; Ruan, Xifeng; Mellado, BruceThe discovery of the Standard Model (SM) Higgs boson in 2012 presents new challenges and opportunities for the Large Hadron Collider (LHC) experiments. After a long period of operation, the LHC experiments needed to maintain and upgrade their detectors in order to continue and conduct research beyond the SM. As part of the upgrades, the Tile Calorimeter (TileCal) participated in Phase-I of the upgrades (December 2018 - March 2022). TileCal, the central hadronic calorimeter (|η| < 1.7) of the ATLAS experiment uses a set of Trigger and Data Acquisition (TDAQ) software to readout, transport and store physics data resulting from collisions at the LHC. In preparation for the Phase-I upgrades, the ATLAS Local Trigger Interface (ALTI) module was designed for the ATLAS experiment at CERN for TDAQ purposes. It is a 6U VME electronics board, which is a part of the Timing, Trigger and Control (TTC) system. It integrates the functionalities of four legacy modules, currently used in the experiment: Local Trigger Processor, Local Trigger Processor interface, TTC VME bus interface and the TTC emitter. The ALTI module provides the interface between the Level-1 Central Trigger Processor and the TTC optical broadcasting network to the front-end electronics of each of the ATLAS sub-detectors. This thesis discusses the development, validation and integration of the TileCal specific ALTI software in the TileCal online software by the author. A set of ALTI boards were installed in the back-end electronics of the sub-detector and fully validated for the ATLAS detector at CERN. Performance testing and maintenance of the ALTI modules and software were performed during the second half of the upgrade period, in preparation for Run 3 (2022–2025) data-taking period. The thesis also discusses the search for the presence of a new heavy resonance produced via gluon-gluon fusion and decaying to the four-lepton (4ℓ) final state, in association with missing transverse energy (EmissT), with ℓ = e, µ (where ℓ is the lepton, e is the electron and µ is the muon). The search uses 2015–2018 proton-proton collision data at √s = 13 TeV, corresponding to an integrated luminosity of 139 fb−1, collected by the ATLAS detector. The data are interpreted in terms of two models, firstly the R → SH → 4ℓ + EmissT , where R is a scalar boson, which decays to two lighter scalar bosons (S and H). The S decays to a pair of neutrinos and the H decays into 4ℓ, through ZZ bosons. The second model is the A → Z(νν)H(ZZ) → 4ℓ + X, where A is considered to be a CP-odd scalar which decays to a CP-even scalar H and the Z boson. The Z boson decays to X, which can be a pair of neutrinos or jets, and the H decays to the 4ℓ final state.Item Leveraging Machine Learning in the Search for New Bosons at the LHC and Other Resulting Applications(University of the Witwatersrand, Johannesburg, 2023-09) Stevenson, Finn David; Mellado, BruceThis dissertation focuses on the use of semi-supervised machine learning for data generation in high-energy physics, specifically to aid in the search for new bosons at the Large Hadron Collider. The overarching physics analysis for this work involves the development of a generative machine learning model to assist in the search for resonances in the Zγ final state background data. A number of Variational Auto-encoder (VAE) derivatives are developed and trained to be able to generate a chosen Monte Carlo fast simulated dataset. These VAE derivatives are then evaluated using chosen metrics and plots to assess their performance in data generation. Overall, this work aims to demonstrate the utility of semi-supervised machine learning techniques in the search for new resonances in high-energy physics. Additionally, a resulting application of the use of machine learning in COVID-19 crisis management was also documented.Item Low-temperature electronic transport of metal doped carbon nanotube molecular hybrids and Nitrogen-doped nanocrystalline diamond(University of the Witwatersrand, Johannesburg, 2024-08) Sodisetti, Venkateswara Rao; Bhattacharyya, SomnathThis thesis explores the magnetism and spin-related properties in carbon-based molecular hybrid materials, with a focus on expanding our understanding of low-dimensional carbon structures and their potential electronic applications. The investigation spans from one-dimensional systems, such as carbon nanotubes (CNTs) functionalized with single-molecule magnets (SMMs), to three-dimensional systems like nitrogen-doped ultra nanocrystalline diamond (UNCD). In these carbon structures, electronic transport is intricately tied to microstructural features, such as grain boundaries and impurity clusters, which hold significant potential for the development of all-carbon electronic devices. The research begins with a detailed examination of the chemical functionalization of multi-walled carbon nanotubes (MWCNTs) through controlled acid treatment to achieve precise metal doping. Using Raman spectroscopy and complementary techniques like ICP-MS and ToF-SIMS, we successfully demonstrate how functionalization levels influence the magnetic properties of CNT hybrids loaded with magnetic metals from the lanthanide series (Gd, Tb, Dy). The study reveals that low percentages of metal doping (0.5% to 1.0%) preserve the magnetic bistability of SMMs post-grafting, while higher doping levels lead to complex magnetic behaviors including super paramagnetism, quasi-ferromagnetism, and potential Kondo lattice behavior inCNT-heavy metal systems. We also explore the spin-phonon coupling in Gd-filled double-walled CNTs, where the onset of superparamagnetic properties at low temperatures is coupled with phonon mode stiffening observed via Raman spectroscopy. This enhanced coupling offers promising pathways for developing efficient molecular qubits through the modulation of spin-phonon interactions in one-dimensional systems. The second part of the thesis investigates into the microwave plasma-assisted chemical vapor deposition (MWCVD) growth of nitrogen-doped nanocrystalline diamond (NCD) thin films on different substrates. By pioneering upgrades to the MWCVD system, I was able to achieve reliable growth of high-quality nanocrystalline diamond thin films. Notably, I observed a novel nanostructure, termed Diaphite-a previously unreported feature, in these NCD films, consisting of nanodiamond grains coherently linked with graphene-like rings. This structure, along with the non-equilibrium growth conditions induced by nitrogen doping and secondary nucleation, presents unique polymorphic features in artificially grown diamonds. Detailed low-temperature transport measurements on four different samples—ranging from 7.5% to 20% nitrogen doping—uncovered complex transport phenomena such as 3D weak localization (WL), variable-range hopping (VRH), and unusual magnetoresistance (MR) behavior. In particular, the 7.5% N2-doped UNCD film on quartz exhibited 3D weak localization (WL) at low fields and anti-weak localization (AWL) at higher fields, with distinct magnetoresistance characteristics depending on the direction of the applied magnetic field. The 20% N2-doped films on both quartz and silicon showed more metallic-like behavior, with magneto-resistance characterized by a B1/2 dependence at low temperatures, suggesting an intricate relationship between doping level, microstructure, and electron transport. These findings significantly expand our understanding of the role that microstructural and chemical modifications play in determining the electronic and magnetic properties of carbon-based materials. This work provides a foundational platform for future research into carbon electronics, offering potential breakthroughs in spintronics, molecular transistors, quantum computing, and other advanced electronic applications.Item Modelling the Sensitivity of the KM3NeT/ARCA and KM3NeT/ORCA to Neutrinos from Quiescent Blazars(University of the Witwatersrand, Johannesburg, 2023-09) Nkosi, Bhuti Linda; Chen, AndrewBlazar jet emission has been modelled using two families of models, leptonic and hadronic, to explain the double-peaked SED. In hadronic models, the higher energy peak is explained by proton interactions with the jet material and external fields. Lepto-hadronic models are a type of blazar emission model that accounts for both leptonic and hadronic processes in the jet. In these models, the low-energy bump of the spectral energy distribution SED is produced by synchrotron radiation from primary electrons, while the high-energy bump is produced by a combination of radiation from protons and secondary particles. Lepto-hadronic models can explain the variability and spectral features of blazars in different states, such as flaring or quiescent. In this project, we used a one-zone lepto-hadronic model to simulate the blazar jet and calculate the neutrino emission and detection prospects with KM3NeT.Item Modification of boron nitride nanostructures induced by medium energy ion irradiation(University of the Witwatersrand, Johannesburg, 2023-08) Lisema, Lehlohonolo Innocent; Madhuku, Morgan; Derry, TrevorThis research focused on using Chemical Vapour Deposition (CVD) to synthesize boron nitride nanostructures, particularly nanotubes, and selectively introducing defects into them through ion implantation. Boron ion implantations were carried out at ambient temperature at 150 keV energy and fluences 1x1014 and 5x1014 ions/cm2. The synthesized samples were analyzed using scanning electron microscopy (SEM), Raman spectroscopy, and Grazing incidence X-ray diffraction (GIXRD). Ion implantation was found to introduce defects into the surface of the samples, resulting in increased stress levels and a higher local density that favoured more crystallized nanostructures. SEM images showed clear evidence of BN nanostructures and boron nitride nanotubes (BNNTs), with the latter appearing as long, thin structures with diameters ranging from ⁓30-90nm. After ion implantation, the Raman spectra of samples implanted with ion fluence 5×1014 ions/cm2 at 1000oC, show an amorphous h-BN peak, and a narrower, intense E2g vibrational mode of h-BN is observed around 1366 cm-1 for samples synthesized at 1100oC and 1200oC. Raman analysis did not show any E2g mode of vibration of h-BN for all samples at implanted with ion fluence 1×1014 ions/cm2. The samples synthesized at 900 ºC had no active 1366 cm-1 Raman peak present. Grazing incidence X-ray diffraction (GIXRD) spectra revealed a prominent peak between 54 and 56 ° 2θ, corresponding to the (004) h-BN reflection, which was used to determine the average a and c lattice parameters 0.249 ± 0.0002 nm and 0.662 ± 0.001 nm, respectively, yielding an interplanar distance of 0.166 ± 0.0001 nm representing the stacking direction of the BN layers. The majority of the samples had broad peaks, indicative of a nanocrystalline material. The only exception was the sample grown at 1200 °C, which was found to have a Scherrer crystallite size >100 nm. In contrast, the rest of the samples had an average size of 3.5 ± 0.3nm. The average crystalline domain size values confirmed that after ion implantation, the phonon lifetime would be longer due to a large domain size, indicating that the BN nanostructures were more crystallized. The fluence of 5x1014 ions/cm2 showed to be the optimal growth condition for BNNTs. Overall, BNNTs and BN nanostructures were effectively synthesized at 900°C, 1000°C, 1100°C, and 1200°C CVD temperatures, and insights into the influence of ion implantation on the composition as well as properties of BN nanostructures are presented. The most noteworthy finding of the experiment was the substantial increase in the size of the Raman derived crystallite domains in the 1100°C and 1200°C samples following ion implantation with boron ions at a fluence of 5x1014 ions/cm2.Item Multi-messenger Indirect Dark Matter Searches in Milky Way Satellites(University of the Witwatersrand, Johannesburg, 2023-09) Noorbhai, Raees Mubeen; Beck, GeoffreyFirst suggested 90 years ago, the Dark Matter (DM) mystery has been deepened by a range of astronomical observations, from the galactic to the cosmological scale, demonstrating anomalous gravitational phenomena which necessitate the existence of some unknown DM. In the 1970s, particle DM models, including the WIMP hypothesis considered in this work, were proposed and have subsequently been subjected to empirical scrutiny. Over the past 2 decades, all DM direct detection experiments, collider searches and indirect detection searches have failed to detect a DM signal, placing stringent constraints upon WIMP parameters and ruling out WIMP-Hadron interactions. Following the detection of an excess e−/e + flux at approximately 1.4 TeV by DAMPE in 2017, a number of Massive Leptophilc Majorana Particle (MLMP) WIMP hypotheses were proposed to explain the flux. To conduct a model-independent test of these hypotheses, Leptophilic WIMPs in the 1-2 TeV mass-energy range are considered, accounting for self-Annihilation along all leptonic channels, as well as the 3l democratic case. The dwarf spheroidal galaxies orbiting the Milky Way (MW), particularly the Ultrafaints, are DM-dominated and are thus strong candidates for indirect DM searches using next-generation telescopes - such as CTA in gamma, KM3NeT in neutrinos and MeerKAT in radio, with sensitivities that dwarf those of prior telescopes like LHAASO. Accounting for the respective fields-of-view of these telescopes, 6 dwarf spheroidals, 4 Ultrafaints and 2 Classicals, are chosen as potential target environments for the multi-messenger analysis. Equations are also derived for the Mean Free Path (MFP) and Mean Annihilation Period (MAP) of the WIMPs in the respective DM Halos, for the case of both an arbitrary Halo boundary and at the virial radius boundary. Utilising conservative estimates of telescope sensitivities, non-detection upper bounds are placed upon the Annihilation cross-section ⟨σv⟩ψ and Decay rate Γψ. These bounds are taken in comparison to the bounds imposed by the Super-amiokande neutrino search in the MW Halo and centre, the ATCA radio search in Reticulum II and the ASKAP/EMUradio search in the LMC. In all cases, the non-detection bounds imposed by observations of the Ultra faints are more stringent, but with greater error margins than is the case with the Classicals. For CTA, non-detection bounds in the case of all Ultrafaints are competitive with those imposed by the ASKAP/EMU search and stronger than those imposed by both the ATCA and the Super-Kamiokande searches. For KM3NeT, no novel non-detection bounds are imposed for observations of all 6 dwarf spheroidals. For MeerKAT, in the case of the µ −/µ + channel, observations of Reticulum II are competitive with the ASKAP/EMU bounds. From the multi-messenger analysis, it is concluded that the strongest non-detection bounds are imposed by CTA observations of Segue 1 and MeerKAT observations of Reticulum II. In the Decay case, the bounds are compared to those imposed by the Fermi indirect search in the IGRB. In the case of all next-generation telescopes, no novel non-detection constraints can be imposed upon Γψ . In the case of the MFP and MAP results, the non-detection lower limits are often many orders of magnitude greater the Hubble time. At the relic density limit, the Halo-independent MAP at the virial limit is 14 orders of magnitude greater than the age of the Universe. This illustrates the severe extent to which the Annihilation channel for WIMPs has been suppressed, since successive instances of non-detection have placed tight bounds on ⟨σv⟩ψ . In light of this, proposed astrophysical explanations for the DAMPE flux are favourable, as they do not require the presupposition of WIMP Dark Matter.Item Optimization of gallium oxide (ga2o3) nanomaterials for gas sensing applications(University of the Witwatersrand, Johannesburg, 2024) Gatsi, Nyepudzai CharslineGas sensors are needed for monitoring different gases in indoor and outdoor environments, food quality assessment, and health diagnostics. Among materials studied for these applications, semiconducting metal oxides (SMOs) have generated a lot of interest due to their excellent sensitivity, simple circuit, and low cost. One-dimensional (1𝐷) 𝐺𝑎2𝑂3 nanomaterials are part of the promising candidates explored for the sensing of different gases due to their excellent electrical conductivity, high catalytic behavior, and chemical and thermal stability. This study reports the optimization of crystal structure, morphology, and surface chemistry of 𝐺𝑎2𝑂3 nanostructures for use in the detection of various gases. A set of unmodified and noble metal modified 1𝐷 𝐺𝑎2𝑂3 nanomaterials were synthesized by microwave-assisted hydrothermal method followed by heat-treatment at different temperatures and their gas sensing performances were systematically studied. The samples were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), Raman analysis, scanning electron microscope (SEM), transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET), photoluminescence (PL), diffuse reflectance spectroscopy (DRS), and X-ray photoelectron spectroscopy (XPS) methods. The effects of heat-treatment temperatures on phase transformations and gas sensing performances of various 𝐺𝑎2𝑂3 polymorphs were investigated. The 𝛼 − 𝐺𝑎2𝑂3, 𝛽 − 𝐺𝑎2𝑂3 and 𝛼/𝛽 − 𝐺𝑎2𝑂3 crystal structures were synthesized and evaluated for gas sensing. The 𝛽 − 𝐺𝑎2𝑂3 sensing layers presented selective response coupled with fast response/recovery times towards carbon monoxide (𝐶𝑂) compared to the 𝛼 − 𝐺𝑎2𝑂3 and 𝛼/𝛽 − 𝐺𝑎2𝑂3 crystal structures. The observed variations in the gas sensing performances of these three crystal structures were attributed to controlled properties of different 𝐺𝑎2𝑂3 polymorphs. Furthermore, the 𝛽 − 𝐺𝑎2𝑂3 polymorph was prepared in the form of regular and hierarchical nanorod-based morphological features which demonstrated different gas sensing behaviors. The 𝛽 − 𝐺𝑎2𝑂3 regular nanorods showed better capabilities of detecting isopropanol than the nanobundle-like and nanodandelion-like features, and these differences were attributed to changes in textural, porosity, and compositional properties related to different morphologies. The effects of incorporating 𝐴𝑔 and 𝐴𝑢 noble metal nanocrystals on regular 𝛽 − 𝐺𝑎2𝑂3 nanorods surfaces on their gas sensing behaviour were also investigated. The results revealed that surface modification of 𝛽 − 𝐺𝑎2𝑂3 nanorods with 0.5 and 1.0 𝑚𝑜𝑙% 𝐴𝑔 and 𝐴𝑢 noble metals significantly lowered the sensor operating temperature compared to that of unmodified 𝛽 − 𝐺𝑎2𝑂3 nanorods towards the detection of ethylene. In addition, surface incorporation of 1.0 𝑚𝑜𝑙% 𝐴𝑔 dramatically increased the sensor sensitivity and selectivity and reduced the response/recovery times towards ethylene gas, and these positive changes were attributed to the electronic and chemical sensitization effects stimulated by the catalytic activity of 𝐴𝑔 nanocrystals incorporated on the surface of 𝛽 − 𝐺𝑎2𝑂3 nanorods. This study unambiguously optimized the crystal structure, morphology, and surface chemistry of 𝐺𝑎2𝑂3 nanostructures for the detection of carbon monoxide, ethylene and isopropanol gases. These sensors may potentially be used in real-time detection of carbon monoxide and isopropanol for indoor air quality monitoring to improve human health. In additional they have also demonstrated capabilities for the precise and economical detection of ethylene around plants and fruits, which could be beneficial to the horticultural and agricultural industriesItem Properties of composite nanomaterials for gas sensor applications(University of the Witwatersrand, Johannesburg, 2023-09) Diantantu, Aime Diakanwa; Usman, IbrahimSensors are- important devices nowadays that have been instrumental towards the development of the Internet of Things (IoT) amongst other recent technological innovations. They are used to detect and respond to some form of input or stimulus from the environment we are living in. There are different types of sensors in the market nowadays, depending on the materials used for their manufacture and their applications, namely position sensors, pressure sensors, gas sensors, etc. Gas sensors use semiconductors as materials. Metal oxides, conducting polymers, carbon nanotubes, graphene, and transition metal chalcogenides are some semiconductors materials used in gas sensors. Metal oxides are very good gas sensors materials due to their low cost, high stability, and sensitivity but their high operating temperature disqualify them. Conducting polymers are also good sensors materials due to their flexibility and low operating temperature but they are altered by humidity. To counteract humidity problem, conducting polymers need to be modified or doped with selected elements or molecules. In this project, cellulose was drugged with carbon nanotube (CNT) to create a mechanically and chemically stable structure, which can interact and sense many gases. The chemical and physical properties of cellulose make it a potential material for the development of conductive and potential sensing stuff. This led to the focus of this investigation, which is the development of mixed cellulose nanocrystal (CNC) – CNT materials for sensor application. The CNC was synthesized through the Tempo oxidation method, and various amounts of CNT were added into the CNC below the aggregation threshold of 2.5% using ultrasonication to form a CNC – CNT rectangular sheet. The developed mixed materials were characterized using Scanning Electron Microscopes (SEM) and Transmission Electron Microscope (TEM) to determine the morphology. Fourier Transform Infrared (FTIR), Raman Spectroscopy and X-ray Diffraction (XRD) were employed to investigate the structure of the final material, while TGA has shown similar degradation temperatures of CNC and CNC – CNT. SEM images showed an interconnected network-like structure with a porous architecture assembled by curved thin sheets, and the increase in CNT resulted in aggregate formation within the CNC. TEM micrographs confirmed the structure of CNC, which was rod-like and artefactual dendrites particles, and the presence of CNT in the matrix, while FTIR confirmed the main functional groups of the mixed matrix sheet. The degree of graphitization and presence of disordered cellulose in the mixed materials were determined by Raman spectroscopy to vary between 0.98 and 1.2. The XRD pattern has shown that the crystallinity index of the CNC – CNT composite is correlated to the increase in the concentration of CNT. However, the TGA data has shown that the CNC – CNT materials exhibited similar thermal behaviour, this is expected, since the concentrations of the composites have similar bonding structure and configuration compared to the pristine CNC. It is also evident that the increase in CNT content reduces the thermal degradation (reduced slope) of the CNC. The research work has developed CNC – CNT materials for sensor applications. The composite has exhibited sensor response and thereby detected H2, CO2, NO2 and Ar gases at room temperature through the changes in their electrical conductivities. The ability of CNC-CNT to respond to these gases at room temperature opens-up the possibility for its easy use in indoor and outdoor monitoring.Item Search for new resonances in the four-lepton channel and implementation of the LED integrator panel for the PROMETEO system in the ATLAS Tile Calorimeter(University of the Witwatersrand, Johannesburg, 2024) Mtintsilana, Onesimo; Kumar, Mukesh; Mellado, BruceThe Large Hadron Collider (LHC) has transformed our understanding of fundamental particles and forces, notably with the seminal discovery of the Higgs boson in 2012, which completed the Standard Model (SM) of particle physics. Despite its success, the SM leaves numerous unanswered questions, motivating a quest for new physics. This thesis explores three main avenues: Firstly, it investigates the possibility of an extended Higgs sector or alternative SM extensions, focusing on heavy ZZ resonances that decay into four leptons. Using a dataset of 139 fb−1 from proton-proton collisions at the LHC, this study explores both gluon-gluon fusion and vector-boson fusion production mechanisms. Although no significant signal for a new resonance is observed, upper limits on the production cross section of spin-0 or spin-2 particles are established. These limits provide constraints on specific theoretical models, such as Type-I and Type-II two-Higgs doublet models for spin-0 resonances, and the Randall-Sundrum model for spin-2 resonances. Intriguingly, the combined results of ATLAS and CMS for Run 2 and Run 3 data in the final state of 4 leptons exhibit an excess around 250 GeV, reaching a significance of 2.4σ which is in the region of interest of the multi-lepton anomalies.. In the second part, the analysis extends to heavy boson decays resulting in a final state with four leptons, specifically focusing on the R boson or the A boson decays into a combination of the SM Higgs boson and another boson, denoted S, which further decays into dark-matter candidates. No evidence contradicting SM predictions is found, yielding stringent upper limits on the production cross-sections of these hypothesised bosons and their branching ratios at a 95% confidence level. Lastly, the thesis highlights advancements in Higgs boson studies and new particle discovery potential in the upcoming High-Luminosity LHC era starting in 2029, emphasising improvements to the ATLAS detector electronics, particularly the integration of a new LED Integrator Panel within the Prometeo portable readout module system, enabling precise calibration and monitoring of individual detector componentsItem Skyrmions and vectorial wavefunctions(University of the Witwatersrand, Johannesburg, 2024) Ornelas, Pedro; Forbes , AndrewThe study and generation of robust structured light stand as compelling areas of focus in the exploration of future classical and quantum photonic technologies. While the appeal of structuring light in all its degrees of freedom (DOFs) is undeniable, achieving the generation of intricate light resilient to noise from multiple sources, such as faulty detectors, stray white light, and atmospheric turbulence, is imperative for its practical integration into forthcoming technologies. Recently, there has been a lot of interest in generating states of light with identifiable topological features which are robust to local deformations thus providing such states with a possible mechanism for noise rejection. Topological structures known as optical skyrmions have garnered a lot of interest in the optics community of late as their magnetic counterparts have shown great promise as potential low-power information carriers. It has been shown that skyrmionic structures may be realised in classical free-space optical beams where their spatial and polarization DOFs are appropriately combined and manipulated to generate what are known as vector beams. Furthermore with the emergence of quantum structured light allowing for the manipulation of an individual photon’s DOFs, such topological structures may also be utilized as a resource for photonic based quantum technologies. In this dissertation we investigate the generation of classical optical skyrmions through the use of Bessel-Gaussian optical modes possessing interesting propagation dynamics which mimic magnetic systems under the application of a magnetic field. Furthermore, we extend the study of optical skyrmions to the quantum realm by generating and characterizing the topology of the quantum analogue to classical vector beams: hybrid entangled states where the spatial DOF of one photon is entangled with the polarization DOF of another. In this case the skyrmionic topology emerges as a shared property of both photons and can be identified through investigating their mutual correlations. We postulate a novel topological characterization of entangled states with the corollary that smooth deformations of these states do not change their topology and thus do not change how they are characterized. We show that the topology remains intact even when entanglement is fragile and further discuss how a typical mechanism for entanglement decay can be characterized as a smooth deformation. Lastly, we investigate the topological resilience of hybrid entangled states in the presence of isotropic noise usually attributed to external sources. We demonstrate the invariance of the topology of these states to varying levels of isotropic noise and discuss the associated mechanism for this invariance.Item Solar cell simulation using ab initio methods(University of the Witwatersrand, Johannesburg, 2024) Zdravkovi´c, Milica; Quand, Alexander; Warmbier, RobertSolar cells are a great source of renewable energy, but they are yet to reach their thermodynamic efficiency limits. Common commercial solar cells run at approximately 20% power conversion efficiency, and almost all efficiency loss comes from thermalisation. Ab initio simulations can reduce the need for physical experiments to quantify these losses while also providing insights into the quantum mechanical properties of materials. Note that density functional theory reformulates the expression for the ground state energy of a many particle system such that it is a functional of the electron density, thereby allowing the electronic energy to be solved for numerically. But the underlying mechanism behind thermalisation is the electron-phonon interaction. Using the theory of Green’s functions, the electron-phonon interaction self-energy and charge-carrier life times can be calculated. A method of approximating the charge-carrier lifetimes using the hydrostatic deformation potential interaction, which is only valid for longitudinal acoustic phonons, is presented. Deformation potentials of -10.125eV for Silicon and 18.663eV for Gallium Arsenide, commonly used solar cell materials, are calculated in good agreement with literature. Furthermore, the electron-phonon interaction life- times were calculated to be in the order of 2.0 × 10−15s for Si and 4.0 × 10−16s for GaAs, which could have indications that the optimal thickness of a GaAs absorption layer is much thinner than for Si. Thus the deformation potential method provides a satisfactory approximation for the electron-phonon quasiparticle lifetimes based on ab initio methodsItem Study on the influence of Nuclear Deformation on the Pygmy Dipole Resonance in Samarium isotopes(University of the Witwatersrand, Johannesburg, 2023) Jivan, Harshna; Sideras-Haddad, Elias; Pellegri, LunaThe past decade has seen an increase in studies dedicated to understanding the low-lying electric dipole (E1) response, commonly referred to as the Pygmy Dipole Resonance (PDR). These studies revealed that the PDR has a mixed isospin nature, and that the use of complimentary probes is needed to fully understand this response. Since majority of studies on the PDR focused on spherical nuclei, the influence that deformation has on the PDR response is yet to be understood. Preliminary relativistic proton scattering studies on 154Sm performed at RCNP (Japan), showed potential evidence for a splitting in the PDR responses similar to that of the Giant Dipole Resonance with deformation. A tentative interpretation suggested that this splitting could be connected to the splitting of the resonance structure with respect to the K quantum number. Theoretical studies considering the deformed HFB+QRPA model however, suggest that this splitting is connected to the isospin mixed character of these states as observed in spherical nuclei. The isoscalar responses of the spherical 144Sm and axially deformed 154Sm isotopes were investigated for the first time using the inelastic scattering of alpha particles at 120 MeV. The comparative experiments were performed at iThemba LABS in South Africa, coupling together for the first time, the K600 magnetic spectrometer in zero-degree mode with the BaGeL (Ball of Germanium and LaBr3:Ce detectors) array. The particle-gamma coincidence measurement was used to obtain the cross section for the population of the pygmy states. In both nuclei, the region of the PDR was excited and the E1 multipolarity of the transitions was supported by the angular correlation between the α-particles and the co-incident γ-rays measured. The total exclusive cross section measured for 144Sm amounted to 24.3 ± 3.8 mb/sr while for 154Sm to 18.8 ± 2mb/sr. The experimental results were compared with the prediction of the RQTBA and the deformed HFB+QRPA theories, respectively. The theoretical cross sections were extracted within a semiclassical coupled-channel approach. The fragmentation observed in the experiment for the 144Sm was underestimated by the calculations, although good agreement with the total cross section measured was found. In the case of the deformed 154Sm however, the experimental cross section accounted for only 52% of the predicted cross section in the same excitation region. The isoscalar response extracted in this thesis was compared with the isovector strength obtain from an experiment performed at RCNP using the relativistic proton scattering at forward angles. The double hump observed in the isovector channel was not found in the case of the isoscalar strength. This implies that the difference obtained between these two experiments is related to the “isospin splitting” of the PDR rather than a splitting of thestrength connected with the K quantum number.Item Surface Brillouin scattering studies of high-temperature elasticity(University of the Witwatersrand, Johannesburg, 1999-03) Stoddart, Paul Randall; Comins, J. DarrelA novel technique has been developed for studying the elastic proper ties of opaque solids at high temperatures. The method is based on surface Brillouin scattering (SBS) and has the advantages of being contact-free and non-destructive. The elastic constants can be extracted from SBS measurements of the directional dependence of the surface wave velocities. An optical furnace was designed to provide the special scattering geometry required for these measurements. The technique has been evaluated on silicon and a single-crystal nickel-based superalloy, with measurements up to 800°C and 200°C respectively. Above these temperatures, measurements were precluded by a marked deterioration in the surface quality. The elastic constants for silicon compare favourably with the established ultrasonic values, particularly in terms of the changes as a function of temperature. Additional measurement were performed on silicon at temperatures up to 900°C in order to examine the well-known central mode feature. These results shed light on a major outstanding problem in SBS, because they reveal the presence of a second quasielastic mode that may be associated with scattering from diffusive excitations. Further measurements at high and low temperatures are proposed to confirm the mechanism. Silicon was also used as a test system to clarify certain aspects of the theory and practice of SBS that have not been properly dealt with before, such as the effects of surface anisotropy and of the extended collection aperture. This indicates that SBS provides effective elastic constants for the outer 300 nm of the sample surface and thus may be influenced by surface damage and surface contamination. In the case of the superalloy, the difficulties encountered in gathering data at higher temperatures suggests that modifications to the furnace arrangement are required. The larger relative error in the velocities also created problems in the extraction of the elastic constants. This difficulty was satisfactorily overcome by using the longitudinal threshold in the Lamb shoulder to fix the value of c₁₁. Although the work described here has been limited to temperatures below 900°C, it is clear that SBS provides a powerful method for probing the elastic properties of opaque solids at elevated temperatures.Item The application of weakly supervised learning in the search for heavy resonances at the LHC(University of the Witwatersrand, Johannesburg, 2023-06) Choma, Nalamotse Joshua; Ruan, Xifeng; Mellado, BruceThe discovery of the Higgs boson at the Large Hadron Collider by the ATLAS and CMS experiments has made the search for new physics beyond the Standard Model a priority in the field of High Energy Particle Physics. New resonances have yet to be discovered using inclusive and model-dependent searches, which means they may be driven by subtle topologies. Rapid improvements in Machine Learning techniques have led to their increasing application in High Energy Particle physics. Unlike supervised learning, which is known to assume full knowledge of the underlying model, semi-supervised learning, in particular weakly supervised learning, allows the extraction of new information from data with partial knowledge. The goal of this study is to set up searches for heavy resonances at the electroweak scale with topological requirements performed in both inclusive and exclusive regions of phase-space tailored to a particular production mode. These resonances could be generated with different production mechanisms. In this work, we describe search procedures based on weakly supervised learning applied to mixed samples and used to search for resonances with little or no prior knowledge of the production mechanism. This approach has the advantage that sidebands or control regions can be used to effectively model backgrounds without relying on models. The effectiveness of this method is measured by the production of the Standard Model Higgs boson, which decays into a pair of photons in both inclusive and exclusive regions of phase-space at the LHC. Having confirmed the ability of the method to extract various Standard Model Higgs boson signal processes, the search for new phenomena in high mass final states will be set up at the LHC. Subsequently, the approach is used in the search for new resonances in the Zγ final state with Z → e +e − or Z → µ +µ −, using the Monte Carlo simulated signal samples for 139 fb−1 of integrated luminosity for Run 2 collected at the LHC. The weakly supervised learning approach is implemented and compared to the performance of the fully supervised approach, which is then used to calculate the production limit for Higgs-like particles for Zγ where the significance of the signal is maximal.