School of Geography, Archaeology and Environmental Studies (ETDs)
Permanent URI for this communityhttps://hdl.handle.net/10539/38007
Browse
2 results
Search Results
Item Integrating Sentinel-1/2 and machine learning models for mapping fruit tree species in heterogeneous landscapes of Limpopo(University of the Witwatersrand, Johannesburg, 2024-10) Chabalala, Yingisani Winny; Adam, ElhadiFrom ancient times to this century, Africa has relied chiefly on agriculture for survival. Crop type maps are crucial for agricultural management, sustainable farming systems, and realizing food security. Agronomists, agricultural extension officers, policymakers, and the government rely on crop type spatial distribution information to make informed decisions and optimize resource allocation for sustainable agricultural management. Attaining food security for all is an urgent need in Africa. However, the farming landscapes predominately comprise fragmented smallholder heterogeneous farms. The farming systems include intercropping and cultivating different crops that require different management strategies. This results in within-class spectral similarities and intra-spectral variability due to similar canopy structures and different phenologies, which complicates the application of remote sensing in crop type mapping. The free availability of Copernicus products such as Sentinel 1 and 2 have high temporal, spectral, and spatial resolution suitable for mapping smallholder agriculture. Thus, this research aimed to integrate Sentinel-1/2 and machine learning models for mapping fruit tree species in heterogeneous landscapes of Limpopo. First, the research tested the applicability of sampling techniques and five mapping classifiers (i.e., Random Forest (RF), Support vector Machine (SVM), Adaptive Boosting (AdaBoost), Gradient Boosting (GB), and eXtreme Gradient Boosting (XGBoost) in mapping fruit trees and co-existing land use types. The original dataset was under-sampled randomly into two balanced datasets (i.e., Dataset 1 and Dataset 2) consisting of 100 and 150 sample points. Furthermore, the imbalanced ratio from the original dataset was reduced by applying different sampling strategies to extract four imbalanced datasets (i.e., at 40%, 50%, 60%, and 70%), which resulted in the formation of Dataset 3, Dataset 4, and Dataset 5, respectively. These samples, together with the original dataset (i.e., Dataset 7), were used as input to Sentinel‑2 (S2) data using adaptive boosting (AdaBoost), gradient boosting (GB), random forest (RF), support vector machine (SVM), and eXtreme gradient boost (XGBoost) machine learning algorithms. The results showed that reducing the amount of imbalanced ratio by randomly under-sampling the original imbalanced dataset could increase the classification accuracy to 71% using the SVM classifier and 60% of the original dataset. Individually, the majority of the crop types were classified with an F1 score of between 60% and 100%. Secondly, the research independently assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for fruit tree mapping using random forest (RF) and support vector machine (SVM) classifiers. Four models were tested using each sensor independently and fusing both sensors. From the fused model, features were ranked using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. The best fruit tree map with an overall accuracy (OA) of 0.91.6% with a kappa coefficient of 0.91% was produced using the RF MDA and FVS model and SVM classifier. The application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; A = 87.01%, Kappa coefficient = 87%, respectively. The green (B3), SWIR_2 (B10), and vertical horizontal (VH) polarization bands were identified as the optimal spectral features for S2 and S1 data, respectively. The third part of the research identified the optimal growth window period in which fruit trees can be detected with high accuracy. Phenological metrics were extracted from 12 months (i.e., January to December) of Sentinel-2 (S2) data and were used to classify fruit trees using a random forest (RF) classifier in a Google Earth Engine environment. The results showed that fruit trees can be detected and mapped with high accuracy during winter months (i.e., April-July) with an overall accuracy (OA) of 84.89% and a kappa coefficient of 83%. The user accuracy ranged from 62 to 100%, while the producer accuracy ranged from 60 to 100%. The fruit trees were mostly differentiated from co-existing land use types using the short infrared and the red-edge bands. The fourth part of the thesis attempted to increase fruit tree classification accuracy by classifying optimal Sentinel-2 images acquired during the fruit trees' critical growth stages using a Deep Neural Network (DNN) model. This was achieved by applying phenological metrics derived from Sentinel-2 images acquired during optimal crop-growing seasons (i.e., flowering, fruiting, harvesting). The DNN models were optimized by tuning the hyperparameters to achieve the best classification results. The DNN produced an OA of 86.96%, 88.64%, 86.76%, and 87.25% for April, May, June, and July images, respectively. The results indicate the DNN models were robust and stable across the selected fruit growth periods. This research has shown that earth observation (EO) data such as Sentinel 1 and 2 can be used to map fruit trees in fragmented sub-tropical horticultural landscapes characterized by different environmental conditions and different crop cultivars operating under different management practices. The research results will assist agricultural stakeholders (i.e., farm managers, agronomists, agricultural extension officers, and policymakers) in allocating agricultural resources, devising effective agricultural management strategies, and attaining sustainable agriculture and food security.Item Mapping and monitoring land transformation of Boane district, Mozambique (1980 – 2020), using remote sensing(University of the Witwatersrand, Johannesburg, 2023) Dengo, Claudio Antonio; Atif, Iqra; Adam, ElhadiAlthough natural and environmental factors play a significant role in land transformation, human actions dominate. Therefore, to better understand the present land uses and predict the future, accurate information describing the nature and extent of changes over time is necessary and critical, especially for developing countries. It is estimated that these countries will account for 50% of the world's population growth in the next few years. Hence, this research was an attempt to assess and monitor land cover changes in Boane, Mozambique, over the past 40 years and predict what to expect in the next 30 years. This district has been challenged by a fast-growing population and land use dynamic, with quantitative information, driving forces and impacts remaining unknown. Through a supervised process in a cloud base Google Earth Engine platform, a set of five Landsat images at ten-year intervals were classified using a random forest algorithm. Seven land classes, i.e., agriculture, forest, built-up, barren, rock, wetland and water bodies, were extracted and compared through a pixel-by-pixel process as one of the most precise and accurate methods in remote sensing and geographic information system applications. The results indicate an active alternate between all land classes, with significant changes observed within agriculture, forest and build-up classes. As it is, while agriculture (-26.1%) and forest (-21.4%) showed a continuously decreasing pattern, build-up class (45.8%) increased tremendously. Consequently, over 69% of the forest area and 59% of the agricultural area shifted into build-up, i.e., was degraded or destroyed. Similarly, the conversion of barren land area (57.2%) and rock area (47.3%) into build-up indicates that those areas were cleaned. The overall classification accuracy averaged 90% and a kappa coefficient of 0.8779 were obtained. The CA-Markov model, used to assess future land uses, indicates that build-up will continue to increase significantly, covering 60% of the total area. From this finding, the land cover situation in the next 30 years will be critical if no action is taken to stop this uncontrolled urban sprawl. An adequate land use plan must be drawn, clearly indicating the locations for different activities and actions for implementation.