Electronic Theses and Dissertations (Masters)

Permanent URI for this collectionhttps://hdl.handle.net/10539/38003

Browse

Search Results

Now showing 1 - 10 of 31
  • Item
    Evaluating the impact of land use activities in and around Lake Kariba on the presence and levels of anions and cations in the water body
    (University of the Witwatersrand, Johannesburg, 2024-09) Monyai, Mokgaetji Andelina; Chimuka, Luke; Tutu, Hlanganani; Cukrowska, Ewa; Richards, Heidi L.
    Huge seas, lakes, and rivers come to mind when we think of surface water. Surface water is vulnerable to water pollution, with consequential repercussions for the well-being of both human and aquatic environments. Furthermore, the diminishing levels of oxygen have a profound effect on the natural ecological equilibrium within river and lake ecosystems. Lake Kariba, situated in the Southern African region, is a vital freshwater ecosystem supporting local communities, wildlife, and regional economies. However, it faces threats from human activities and erratic weather. This study investigated the influence of land use activities in and around Lake Kariba on water composition and the concentration of anions and cations. The research employed a combination of field surveys and laboratory experiments to identify potential sources of ions. Sixty-nine (69) water samples (53 downstream and 16 upstream) were collected during different seasons in October 2021, July 2022 and April 2023. The Ion Chromatography, Inductively Coupled Plasma equipped with Optical Emission and Mass Spectroscopy detectors were used to concentrations of various anions (Fˉ, Clˉ, NO3ˉ, SO4 2ˉ, and PO4 3ˉ) and cations (Ca, K, Mg, Na, Si, Al, Cr, Fe, Mn, As, Cu, Ni, Ti, and Zn) respectively. Acidic water was notably observed upstream in two sampling areas, namely the Malasha and Kanzinze rivers. The Malasha River exhibited pH levels ranging from 3.71 to 4.81, while the Kanzinze River showed a pH of 6.01. The electrical conductivity (EC) for Malasha ranged from 1035 to 1484 µS/cm, whereas for Kanzinze, it measured 878.0 µS/cm. These areas exhibited significantly elevated levels of both anions and cations. In the Kanzinze River, the detected concentrations showed the following descending order: SO4 2ˉ> Clˉ > NO3ˉ> Fˉ> PO4 3ˉ (anions); Ca > Mg > Na > K > Si > Fe > Al > Zn > Cu > Mn > Ni > Cr > Ti > As (cations). Conversely, the Malasha River, exhibited the following order for anions: SO4 2ˉ > Clˉ > NO3 ˉ > Fˉ > PO4 3ˉ, and for cations: Ca > Fe > Mg > Na > Si > K > Al > Mn > Zn > Cr > Cu> Ni > Ti > As. The significant presence of SO4 2- and NO3 - indicates that human activities and agricultural practices in certain areas of Lake Kariba's catchment can have a considerable impact on the lake's water quality. Despite this, the corresponding Water Quality Index (WQI) indicated that the water quality from Kanzinze and Malasha rivers was unsuitable for drinking purposes. The findings revealed variations in ions concentration at different sampling points, with discernible patterns corresponding to specific land use types, such as mining in the upstream that elevated the levels of SO4 2- and some heavy metals and also NO3 - levels in the downstream due to commercial cage fish farming. Statistical analysis showed significant downstream variations (p < 0.05) in water chemistry parameters related to land use, while upstream areas exhibited no significant differences (p > 0.05). Water quality index ranged from 13.1 to 230.0, categorizing water quality from "excellent" to "very poor." The study underscores the complex interplay between land use activities and water chemistry in Lake Kariba, emphasizing downstream impacts. These findings contribute valuable insights for sustainable management and conservation efforts in the region, considering the dynamic nature of the ecosystem and potential threats posed by anthropogenic activities. Continuous monitoring and mitigation strategies are crucial to reserving the ecological balance of Lake Kariba and safeguarding the well-being of its surrounding communities and wildlife.
  • Thumbnail Image
    Item
    High entropy spinel oxides and iron-cobalt based electrocatalysts for rechargeable zinc-air batteries
    (University of the Witwatersrand, Johannesburg, 2024-08) Mongwe, Agnes Monosi; Ozoemena, Kenneth Ikechukwu; Haruna, Aderemi B.
    The development of effective and stable rechargeable zinc-air batteries (RZABs) using noble-metal free bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) has been a key challenge to its practical applications. This MSc research work strategically investigated some synthetic methods aimed at tuning the physicochemistry and electrochemical properties of two electrocatalysts (i.e., noble-metal free high entropy spinel oxide (HESOx) ((CoCuFeMnNi)3O4) and spinel Fe2CoO4 for rechargeable zinc-air batteries). For HESOx, a simple and reproducible Pechini method was used to synthesize a homogeneous nanosized electrocatalyst HESOx-550. The HESOx-550 was thereafter supported on onion-like carbon (OLC) in (1) an acidic environment to produce HESOx-550/OLCAT (where AT stands for acid-treated) and (2) a nonacidic environment to produce HESOx-550/OLC. The effects of the different synthesis environments on these three samples were thoroughly investigated using different analytical techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, thermogravimetric analysis (TGA) and Nitrogen Gas Adsorption analysis. The Nitrogen Gas Adsorption analysis results show that the HESOx-550/OLCAT has the largest surface area and more volume. The electron paramagnetic resonance (EPR) and O1s XPS data consistently proved that HESOx-550/OLCAT has improved oxygen vacancies which are essential in improving conductivity and offering abundant reaction sites. The HESOx-550/OLCAT shows the best bifunctional ORR and OER electrocatalytic performance with a bifunctionality index (ΔE) of 0.70 V in 1 M KOH. In addition, the RZAB air electrode with HESOx 550/OLCAT exhibits high areal capacity (60 mAh cm-2) and areal energy density (73.2 mWh cm-2) with a long-term cycle stability over 112 h in 6.0 M KOH and 0.2 M zinc acetate. The HESOx-550/OLCAT RZAB shows better electrochemical performance than 10wt.% Pt/C- IrO2 when cycled over 315 h under 27% depth of discharge condition. For Fe2CoO4, iron cobalt-based electrocatalysts on Vulcan carbon support were synthesized using a simple reduction method to produce two composites (FeCo-Fe2CoO4/CAnnealed), and (FeCo Fe2CoO4/CMicrowave). The physicochemical analytical methods such as XRD, XPS, Raman, TGA and Nitrogen Gas Adsorption analysis were used to investigate the samples. The electrochemical analysis showed that the FeCo-Fe2CoO4/CAnn had a very low “bifunctionality index” (ΔE) of 0.76 V and the FeCo-Fe2CoO4/CAnn air cathode RZAB demonstrated good stability for over 50 h under harsh DOD conditions (35.2%). The assembled RZABs have areal energy densities of 48.4 mWhcm-2 and 60.5 mWhcm-2 which are higher than the minimum recommended areal energy density of 35 mWhcm-2 (and better than most electrocatalysts reported in the literature). This study has significant contributions to the progress of practical applications of RZABs.
  • Thumbnail Image
    Item
    A systematic study on the use of the sol-gel synthetic method for lithium manganese oxide-based cathode materials
    (University of the Witwatersrand, Johannesburg, 2024-09) Muntswu, Zwivhuya; Billing, Caren; Ferg, Ernst E.; Billing, David G.
    This dissertation investigated the synthesis of two lithium manganese oxide-based cathode materials (Li1.03Mn1.97O4 and LiAl0.4Mn1.6O4) using the sol-gel method and probing the phase transitions during the synthesis. The sol-gel synthetic method involved dissolving stoichiometric amounts of lithium nitrate, manganese nitrate hydrate, and citric acid in distilled water forming an aqueous solution. The starting precursor materials were dried at 140 °C which formed a crystalline phase of -Aqua-S-citrato (2-)-manganese(II) with an orthorhombic crystal system and P222 space group. The thermal behaviour of the precursor was explored to understand the effects of calcination/annealing temperatures. Thermal analysis of precursors prepared using nitrate salts with a 1:1 total metal ion to citric acid ratio displayed thermal stability to temperatures higher than 380 °C with the formation of a final metal oxide after 70% mass loss due to the decomposition of the organic and nitrate materials. However, when increasing the concentration of the complexing agent, an increase in material decomposition due to an increase in organic material is seen. The precursor materials prepared with a lower complexing agent concentration result in materials that have thermal instability when exposed to high temperatures. Thermal analysis of Li1.03Mn1.97O4 and LiAl0.4Mn1.6O4 prepared using acetate salts as starting materials shows material decomposition at high temperature of ~600 °C Calcining both undoped and Al-doped nitrate precursors at moderate temperatures (380 °C to 500 °C) resulted in the formation of Li1.03Mn1.97O4 and LiAl0.4Mn1.6O4 with a pure cubic spinel structure and an Fd-3m space group, however, increasing the calcining temperature to 800 °C for the undoped nitrate-based precursor revealed an impurity phase formation relating to dilithium manganese oxide with a monoclinic crystal system. On the other hand, calcining acetate-based precursors at moderate temperatures (380 °C to 500°C) results in metal oxides with low crystallinity compared to metal oxides prepared with nitrate-based precursors. Calcining acetate-based precursors at 800 °C was more favourable since they form the desired metal oxides without any impurities which might imply structural phase stability at high temperatures. The local and average crystallographic structures (via PDF and XRD respectively) of various nitrate-based metal oxides were investigated, where a good agreement between collected data and a calculated structural model revealed the formation of a cubic spinel structure of space group Fd-3m. Li1.03Mn1.97O4 and LiAl0.4Mn1.6O4 metal oxides were achieved from calcining precursors at moderate temperatures of 380 °C and 450 °C. The PDF high r-value signal displays a good fit which confirms to the average structure data information where the r-value signal which correspond to the local structure refinements have a minor discrepancy when fitted with a cubic spinel of space group Fd-3m.
  • Thumbnail Image
    Item
    Synthesis of platinum-based electrocatalysts using nitrogen doped onion-like carbon and WS2 composites as the support for electrooxidation of ethanol in direct alcohol fuel cells
    (University of the Witwatersrand, Johannesburg, 2024-10) Bila, Laercia Rose; Gqoba, Siziwe; Maubane-Nkadimeng, Manoko S.
    The study reports on the synthesis of onion-like carbons (OLCs)/tungsten disulfide (WS2) composites as catalyst support for direct alcohol fuel cells (DAFC). OLCs were synthesized using waste engine oil over a flame pyrolysis (FP) method. The pristine OLCs (p-OLCs) were functionalized and purified using nitric acid (HNO3). The functionalized OLCs (F-OLCs) were further doped with nitrogen using melamine to increase the electronic properties of the OLCs. WS2 was synthesized using the colloidal method and oleylamine was used as the capping agent. Pt/p-OLCs, Pt/F-OLCs, and Pt/N-OLCs were synthesized using a reflux method where ethylene glycol was the reducing agent. Finally, WS2/N-OLCs were synthesized using the colloidal method and then Pt was dispersed on WS2/N-OLCs to form Pt/WS2/N-OLCs. High-resolution transmission electron microscopy showed the presence of onion-like rings in the OLCs and the quasi-spherical morphology, while a flower-like morphology was observed for WS2. Powder X-ray diffraction revealed that the synthesized WS2 had traces of WO3 due to the oxidation of WS2 which introduces WO3 impurities. Energy Dispersive X-ray Spectroscopy revealed that the OLCs derived from waste engine oil present some impurities that were attributed to the motor wear as well as the fuel. When Pt was loaded onto the WS2/N OLCs composite, the WS2 lost its original nanoflower morphology, which was attributed to the presence ethylene glycol used as a reducing agent. X-ray photon spectroscopy confirmed the successful synthesis of the Pt electrocatalysts. Cyclic voltammetry was used to determine the oxidation of ethanol and the current density of the synthesized electrocatalysts. Interestingly, the Pt/p-OLCs electrocatalyst had a higher current density compared to Pt/F-OLCs and Pt/N-OLCs. This was attributed to metal impurities found in p-OLCs, which were reduced during the purification process. The Pt/WS2/N-OLCs electrocatalyst showed higher current density compared to Pt/WS2 but this was low compared to Pt/N-OLCs. The data reveals that the addition WS2 shows a co-catalyst behaviour, rather than a support.
  • Thumbnail Image
    Item
    Biocatalytic oxidative conversion of valencene to nootkatone mediated by lipoxygenase and cytochrome P450
    (University of the Witwatersrand, Johannesburg, 2024-03) Raboya, Christopher; Ngwira, Kennedy; Brady, Dean
    Nootkatone (NK) is an oxygen-containing sesquiterpene with a significant grapefruit aroma and plays an important role in the flavour and fragrance industry. The natural production of NK through extraction produces trace amounts and is therefore not a viable option to meet industrial needs. The chemical synthesis often utilises reagents harmful to the environment. The purpose of this research was to explore the use of crude lipoxygenase (LOX) enzyme extracted from soya beans, commercial mutants of CYP450 as well as laccase enzymes for the conversion of valencene (VL), the aroma components of citrus fruits to NK. For the LOX reactions, a conversion of 28.79% (mol/mol) was obtained when the reactions were performed with LOX only. The best conversion of 74.46 % was realised when FeSO4.7H2O and MnSO4 were added to the reaction. In the temperature studies, 70 ˚C was shown to be the optimal temperature for the conversion. In addition, we observed that vegetable oils provided sufficient unsaturated fatty acids to facilitate the conversion of VL to NK with sunflower oil being the best. In exploring the potential of LOX to oxidise other organic molecules, caryophyllene was oxidised to novel caryophyllene oxide, and styrene was oxidised to benzoic acid, 1-phenylethane-1,2-diol, and 2-hydroxyl-2-phenylethyl benzoate. This is the first time that such oxidations are reported, and this underlines the potential of LOX in biotransformation and organic synthesis. For CYP450 reactions, the best conversion of 16.70 % was obtained using a variant sourced from Prozomix. Evaluation of parameters such as temperature, pH (7.0 to 7.5), using buffer solutions should be explored to optimise the activity of the enzyme. Laccase from Novoprime Base 268 showed no activity for the conversion of VL to NK despite making use of mediators. Therefore, we should explore changing the reaction conditions, varying the pH of the reaction, buffer strength or mediator and laccases from other sources such as Cerrena unicolor and Trametes versicolor, as well as a fresh batch of laccase from Trichoderma (Merck) should be assessed in the conversion of VL to NK.
  • Thumbnail Image
    Item
    Synthesis and characterization of onion-like carbons for adsorption of tartrazine dye in water
    (University of the Witwatersrand, Johannesburg, 2024-08) Cwayi, Herbert Qaqambile; Maubane-Nkadimeng, Manoko S.; Coville, Neil J.; Maboya, Winny K.
    Industrial effluent often can contain a significant amount of synthetic dyes. The discharge of wastewater containing dyes into water streams without proper treatment consequently enters the soil and disturbs the aquatic and terrestrial life. Several wastewater treatment technologies have been proposed that can efficiently reduce the amount of synthetic dyes from the environment, in particular azo dyes. Among all the existing technologies for wastewater treatment, physical adsorption is a popular technology because it is inexpensive, simple, and efficient. The aim of this study is to synthesize, modify, and characterize onion-like carbons (OLCs) derived from four different waste oils for the adsorption of tartrazine dye in water. The OLCs derived from different carbon precursors (waste household oil, restaurant waste oil, engine waste oil, and paraffin oil bath waste) were synthesized using a flame pyrolysis method. The synthesized materials were doped with nitrogen using a chemical vapor deposition technique using 10% ammonia gas as a source of nitrogen. The N-doped OLCs were attached with hydroxyl groups through oxidation reactions to improve their solubility and adsorption efficacy. According to the high-resolution transmission electron microscopy and scanning electron microscopy images, the OLCs from all four-carbon precursor were quasi-spherical, agglomerated, and presented a chain-like structures of multi-layers. The distance between the graphitic layers was found to be 0.32 nm. The average particle size of OLCs was calculated to be 40.2 ± 2.5 nm. Adsorption studies revealed that the initial dye concentration, contact time, and pH of the dye solutions influenced the adsorption capacity of the tetrazine. Nitrogen doping of OLCs increased its capacity to adsorb the tartrazine dye. The nitrogen doped OLCs from household waste oil (H-N-OLCs) and engine waste oil (E-N- OLCs) were used in equilibrium adsorption studies in this work. For a concentration of 20 mg/L of tartrazine dye, an adsorption capacity of 28.9 mg/g was achieved using the N- doped OLCs from household waste oil. The adsorption process follows the pseudo second- order kinetic model. The adsorption isotherm is best fitted to the Freundlich mathematical model. The results obtained show that, the source of oil did not have major effect on the physicochemical properties of OLCs and that incorporation of nitrogen onto carbon matrix enhanced the adsorption of the anionic tartrazine dye in aqueous solution.
  • Thumbnail Image
    Item
    Silver nanoparticle-modified cellulose nanocrystals for fouling control in membrane distillation
    (University of the Witwatersrand, Johannesburg, 2023-06) Mpala, Josephine Tshepiso; Nthunya, Lebea; Richards, Heidi; Etale, Anita
    A global reduction in water resources and the growing demand for fresh water has motivated the quest for the development of sustainable water-augmenting technologies. Membrane distillation (MD) is envisaged as an attractive desalination technology, surpassing cost challenges faced by conventional desalination technologies. Yet, its industrial commercialization faces multiple limitations, including the production of low water fluxes, membrane wetting and membrane fouling. This study sought to investigate the performance of silver nanoparticles (AgNPs) embedded on cellulose nanocrystals (CNCs) (CNC-capped AgNPs) to lessen the impact of biofouling in MD. This was conducted through coating the polyvinylidene fluoride (PVDF) membrane with CNCcapped AgNPs. Prior to coating with CNC-capped AgNPs, PVDF membrane properties were improved (for MD suitability) through blending with polyvinylpyrrolidone (PVP) and functionalized carbon nanotubes (f-CNTs). The resulting membrane had an improved overall porosity, and a respective increase in surface roughness (75%) and mechanical strength (45%). Pristine CNC-capped AgNPs’ characterization presented stable AgNPs with minimal leaching. Transmission electron microscopy (TEM) micrographs revealed a uniform dispersion of spherically shaped AgNPs exhibiting 13.3 ± 3.4 nm average diameter. The presence of AgNPs on the surface of CNCs afforded excellent thermal stability and good anti-microbial activity, mainly against E. coli, P. aeruginosa, S. aureus, S. epidermis, and S. saprophyticus. Following membrane modification, preliminary anti-bacterial tests conducted on the CNC/AgNP-modified PVDF membrane revealed a 98.7%, 52.3%, 78.0%, 53.9% and 93.3% reduction of E. coli, P. aeruginosa, S. aureus, S. epidermis, and S. saprophyticus cells, respectively, demonstrating its ability to control biofouling. Although the CNC/AgNP-modified PVDF membrane exhibited improved membrane properties, such as high surface roughness, high liquid entry pressure (LEP), and good hydrophobicity, its performance in MD (with artificial seawater as the feed stream) was poor, producing the lowest average water flux (0.179 ± 0.0303 kg/m2 /hr) compared to the unmodified PVDF membrane (0.528 ± 0.0838kg/m2 /hr), mainly due to pore blockage. However, upon spiking the artificial seawater with a monoculture of G. Stearothermophilus, the CNC/AgNP-modified PVDF membrane displayed the most stable water flux while the unmodified PVDF membrane’s water flux decreased by 79.3% over the 24-hour (h) period. This was attributed to the formation of a biofouling layer on the PVDF membrane which was absent on the CNC/AgNP-modified PVDF membrane. The AgNPs on the surface of the membrane afforded minimal bacterial deposition during operation. These results ascertain the possibility of biofouling minimization in MD using CNC-capped AgNPs, contributing to MD’s body of work for its ultimate realization for up-scaling.
  • Thumbnail Image
    Item
    Carbon nitride-based catalysts for thermal carbon monoxide oxidation: Does phase matter?
    (University of the Witwatersrand, Johannesburg, 2023-06) Mohamed, Ahmed Gamal Abdelmoneim; Ozoemena, Kenneth Ikechukwu; Abdullah, Aboubakr M.; Eid, Kamel
    Carbon monoxide (CO) has a poisonous effect on all living organisms as it binds to the hemoglobin of blood cells, preventing oxygen uptake. Thus, the conversion of CO to less dangerous gas such as CO2 is an essential process. This work presented the utilization of carbon nitrides (C3Nx) in different phases (βgC3N4, βC3N5, βC3N6) for thermal carbon monoxide (CO) oxidation. Herein, gC3N4, C3N5, and C3N6 were prepared by pyrolysis of their amine precursors, which were doped with Fe by two distinct methods; mechanical mixing (Fe/C3Nx-M) and polymerization (Fe/C3Nx-P). The controlled preparation of Fe/gC3N4-P allowed the formation of hierarchical porous structures with high surface area (219 m2/g) compared to the Fe/gC3N4-M (77 m2/g). This enabled the ease of reactants diffusion, enhanced the electron transfer, and maximized the atomic utilization. Accordingly, Fe/gC3N4-P (T100= 245 °C) presented higher catalytic activity than Fe/gC3N4-M (T100= 291 °C). In addition, bimetallic FeTi/gC3N4-P and trimetallic FeTiCu/gC3N4-P catalysts achieved the complete conversion of carbon monoxide (CO) at lower temperatures; 175 and 147 °C, respectively, which was attributed to the enhanced reducibility, and synergistic effect of Ti and Cu. Besides, FeTi/gC3N4-P and FeTiCu/gC3N4-P showed higher catalytic activity than Pd/C commercial catalyst (T100= 198 °C). In addition, the trimetallic FeTiCu/gC3N4-P showed a stable catalytic behavior without any deactivation for more than ten hours. This study showed that the C3Nx phases worked successfully in the thermal catalytic CO oxidation. However, the gC3N4 phase is the most active one when doped with metal(s), as it offered higher crystallinity, graphitization, and thermal stability than C3N5 and C3N6. This study also paves the way for the utilization of gC3N4 as a support for different metals to be used efficiently in various thermal catalytic applications, not only CO Oxidation.
  • Thumbnail Image
    Item
    Tailored Fabrication of MXene/Chitosan Nanocomposites as Efficient Adsorbents for Heavy Metals Removal from Wastewater
    (University of the Witwatersrand, Johannesburg, 2023-08) Ibrahim, Yassmin Ahmed Ismail; Eid, Kamel; Ozoemena, Kenneth Ikechukwu
    MXene (Ti3C2Tx) has been extensively utilized in water purification systems, including toxic metal ions removal, owing to the unique layered structure and abundant oxygen surface groups. However, challenges such as aggregation and solubility of Ti3C2Tx nanosheets in water have prompted the need for innovative strategies. In this study, we introduce a i3C2Tx-incorporated chitosan matrix (MX/CS) adsorbent designed to address solubility concerns during water treatment. MX/CS adsorbents are tested towards the capture of “cadmium” (Cd 2+) and “Zinc” (Zn2+) ions in aqueous solutions at varied pH values (i.e., acid, neutral and alkaline), initial ions concentrations (25, 50 and 100 ppm), and varied Ti3C2Tx loading (i.e., 1, 5 and 10), to study the optimization adsorption parameters. In addition, the Ti3C2Tx nanosheets were activated/alkalinized at ratio (2:1, i.e., 2MX:OH/CS), where more negative-ions sites are provided, thus, enhancing the preferential sorption for heavy metal ions in terms of high adsorption capacities, and kinetics than the non-activated samples (MX-10/CS). Freundlich isotherms are predominated for the Cd2+ and Zn2+ ions adsorption on both adsorbents. A selectivity study reveals that Zn2+ ions got adsorbed faster on the adsorbents than Cd2+ ions because of its low atomic radii and electronegativity. Finally, the adsorbents will be generated and prepared for additional adsorption cycles to test their stability. The second part of this work is to present the novel fabrication of multifunctional hydrophobic polymeric foam MX nanocomposites for large-scale ultrafast wastewater treatment. Likewise, the foam nanocomposite will be tested for the adoption of multi-ions solution over wide pH rage to demonstrate the applicability of the novel adsorbent for large-scale applications. Overall, this research contributes to the advancement of water treatment technologies by enhancing the stability of MXene-based adsorbents and introducing an innovative fabrication method for hydrophobic polymeric foam MX nanocomposites. The outcomes demonstrate the applicability of these novel adsorbents for efficient and scalable water purification solutions.
  • Thumbnail Image
    Item
    The synthesis of aryl benzamides as potential HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs)
    (University of the Witwatersrand, Johannesburg, 2023-07) Mohasoa, Likhopotso Cecilia; Zimuwandeyi, Memory; Bode, Moira L.
    Dihydro-alkoxybenzyloxopyrimidines are heteroaryl-containing compounds that have previously been shown to exhibit excellent activity against HIV-1 reverse transcriptase (RT) enzyme. In our own laboratory, 2-chloro-N-(6-(piperidin-1-yl)pyridin-2-yl)benzamide was identified as a compound with activity against wild-type HIV-1. Using these two structural types as a guide, as part of our ongoing studies to search for anti-HIV therapeutic agents that target the RT enzyme, a library of arylbenzamide compounds bearing a pyrimidine ring as a central core was synthesized. These compounds contained an oxygen linker to allow flexible rotation of the molecule in the RT active site, with the aim of achieving activity against wild-type and mutant HIV-1. As a starting point, in order to first identify a suitable synthetic method and then apply it for our target novel compounds, four different carboxylic acids and two classes of amines were tested. Amidation reactions were carried out on unsubstituted benzoic acid, 3-methoxybenzoic acid, 3-hydroxybenzoic acid, and 3-((2,6-dichloropyrimidin-4-yl)oxy)benzoic acid. In this last case, the 3-hydroxybenzoic acid moiety had already been linked to the pyrimidinyl core in order to test which order of reaction worked best: linking followed by amidation, or the reverse. Reaction of these benzoic acid derivatives with anilines and aminopyridines gave the resulting benzamides in 22-99% yields after optimization. When triethylamine was used as a base in amidation reactions involving 2-amino-3-bromopyridine, 2-amino 5-bromopyridine and 2-amino-5-methylpyridine, diacylation was favoured, while when pyridine was used, monoacylation predominated. The reactions to link benzoic acid derivatives to the pyrimidinyl core were carried out by displacement of chlorine on 2,4,5-trichloropyrimidine. The displacement of the first chloride was tested using three types of nucleophiles. The first nucleophile was methyl 3-hydroxybenzoate, effectively a protected benzoic acid, which afforded methyl 3-((2,6-dichloropyrimidin-4-yl)oxy)benzoate in 81% yield. Problems with subsequent hydrolysis of the ester made this route impractical. The second nucleophile was 3-hydroxybenzoic acid which provided 3-((2,6-dichloropyrimidin-4-yl)oxy)benzoic acid in 81% yield. The third nucleophile was N-(5-bromopyridin-2-yl)-3-hydroxybenzamide, where amidation had already been performed, which transformed into the desired compound N-(5-bromopyridin-2-yl)-3- ((2,6-dichloropyrimidin-4-yl)oxy)benzamide in 28%. The low yield obtained from reaction of the amidated nucleophile identified the most promising route to be linking of 3-hydroxybenzoic acid to 2,4,5-trichloropyrimidine first, followed by amidation. After the successful displacement of the first chlorine atom, two of the resulting analogues 3-((2,6-dichloropyrimidin-4-yl)oxy)-N-(p-tolyl)benzamide and N-(4-bromophenyl)-3-((2,6-dichloropyrimidin 4-yl)oxy)benzamide were functionalized with sulfur and nitrogen nucleophiles by displacement of a second chlorine atom. Ethanethiol proved to be highly nucleophilic, leading to pyrimidine C-O bond cleavage and sulfur disubstitution, while the nitrogen ucleophiles propylamine and piperidine afforded their corresponding derivatives in good yields without breaking the carbon-oxygen bond. The newly coupled propyl compound was further derivatized by means of hydrolysis with sodium hydroxide to yield the desired novel 3-((6-hydroxy-2-(propylamino)pyrimidin-4-yl)oxy)-N-(p tolyl)benzamide or 3-((6-oxo-2-(propylamino)-1,6-dihydropyrimidin-4-yl)oxy)-N-(p-tolyl)benzamide compound.