Electronic Theses and Dissertations (PhDs)

Permanent URI for this collectionhttps://hdl.handle.net/10539/38002

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Energy storage properties of carbon onion-carbon nanofibre composites containing transition metal compounds
    (University of the Witwatersrand, Johannesburg, 2022) Khawula, Tobile Nokuphiwa Yollanda; Ozoemena, K. I.
    The quest for electrical energy storage has been a key driver for researchers to come up with more effective means of storing this form of energy due to the intermittent nature of renewable energy sources. Several countries have swiftly adopted the transformative potential of renewables, in particular solar energy, while others have delayed the implementation due to complex policies surrounding renewable energy projects. A way forward would be innovative regulatory approaches that encourage the pairing of solar systems with other generation technologies, and with storage, to offer a “round the clock” supply. Rechargeable batteries and supercapacitors are widely employed energy storage systems. A rechargeable battery system offers high energy density, with lithium-ion batteries (LIBs) being the most widely used. For some applications, it is imperative that energy is delivered at a much faster rate. This characteristic feature is known as power density, and supercapacitors have proven to be much better than batteries in this case. The large-scale commercialization and adoption of a supercapacitor are hindered by its low energy density. The electrode material is a major determinant of the success of supercapacitors. Generally, these are supported on high surface area carbon materials. This study focused on the development of electrospun polyacrylonitrile (PAN) fibres embedded with onion- like carbon (OLC) and iron (II) phthalocyanine (FePc) particles, and encapsulation of the fibres with Molybdenum disulphide (MoS2). Furthermore, composite fibres were either integrated with manganese (III) oxide (Mn2O3) or engineered with defects for enhanced performance in symmetric supercapacitors. The synthesis of electrode materials was divided into four phases; In the first phase (1), OLC nanoparticles were embedded in electrospun PAN fibres and decorated with the Mn2O3 and evaluated as supercapacitor electrode materials. For enhanced interfacial electrochemistry and overall capacitance, the electrode material in (1) was encapsulated with MoS2 in phase (2). In phase (3) FePc embedded in the PAN electrospun fibres were evaluated for supercapacitor applications. Limited specific capacitance and poor cycling stability were observed, thus suggesting integrating OLC and further encapsulation with MoS2, in phase (4). The morphology of the fibres was vii engineered with defects in the form of Fe2+ vacancies to maximize the electrochemical reactions of the OLC/MoS2 fibre composite. The electrochemical properties of the fibre composite materials were investigated and OLC/Mn2O3-CNF exhibited a specific capacitance, energy and power density of electrodes were 200 F g-1, 44.63 Wh kg-1 and 3 235 W kg-1, respectively with excellent capacitance retention. While the MoS2 encapsulated and Mn2O3 decorated fibre composite, OLC/MoS2@Mn2O3 displayed a specific capacitance, energy and power density of 348 Fg-1 18.42 Wh kg-1 and 5 095 W kg-1, respectively. It is pertinent to note that the capacitance of the electrodes was retained throughout the 5 000 cycles of the charge-discharge test. Upon thermal treatment at 600 °C, FePc-PAN transformed into FeN4-CMF and exhibited a specific capacitance, energy and power density of 147 F g-1, 12.48 Wh kg-1 and 4 320 W kg-1, respectively. The vacancy-rich (FeN4)d-OLC- CNF@MoS2 composite obtained by the removal of Fe2+ atoms, showed a specific capacitance, energy density and power density of 481 F g-1, 76 Wh kg-1 5833 W kg-1, respectively. This study underscores strategic processes that can be adapted in the design, synthesis and optimization of supercapacitors-based electrodes for enhanced performance.
  • Thumbnail Image
    Item
    Development of eco-friendly building bricks derived from carbon nanotube-reinforced coal ash and low-density polyethylene waste materials
    (University of the Witwatersrand, Johannesburg, 2024) Makgabutlane, Boitumelo; Maubane-Nkadimeng, M.S.; Coville, N.J.
    This study reports on the incorporation of carbon nanotubes (CNTs) into the all-waste derived building bricks. The focus was on waste management and beneficiation of plastic waste and coal ash, which are generated in large volumes without sufficient recycling. The waste materials were characterized using a range of techniques to ascertain their properties for application. Multiwalled carbon nanotubes (MWCNTs) were synthesized using a facile floating chemical vapour deposition method (CVD) and their physicochemical properties were tested. Bricks with dimensions of 220 x 105 x 70mm were developed with an optimum 85:15 coal ash to plastic waste ratio respectively using a specialized reactor. The bricks were tested for compressive strength, split tensile strength, water absorption, strain, thermal stability and durability using oxygen permeability index, chloride conductivity index and water sorptivity index as indicators. Furthermore, environmental and financial sustainability and ecotoxicology were tested. At optimum conditions, high quality MWCNTs with a diameter of 83 nm, length of 414 μm and a carbon yield of 73% were obtained. The ID/IG ratio of 0.44, an oxidation temperature of 649 °C, a purity of 94% and surface area of 50.9 m2/g were achieved. Coal fly ash with a spherical shape, particle size of below 10 micron and a thermal stability of 680 °C was used as an aggregate for the bricks. The bricks (without CNTs) developed their maximum compressive strength of 11.9 MPa at 14 days. The incorporation of the CNTs improved the microstructure of the bricks by filling the voids and providing a bridging effect as reinforcement mechanisms. The optimum CNT loading of 0.05 wt.% produced bricks with a compressive strength of 22 MPa and tensile strength of 8.7 MPa, which exceeded the South African National Standards (SANS227:2007) requirements for building bricks by 450% and 625% respectively. The durability properties were improved as the CNT dosage was increased from 0-10 wt.%. The 0.05 wt.% bricks were categorized as “good” for all the durability indexes. The CNT containing bricks showed improved thermal stability and maintained their structural integrity. The chemical resistance also improved and the efflorescence was minimal on all the bricks. The utilization of waste in the bricks enabled resource conservation, reduced pollution and reduced cost compared to conventional bricks. When only considering the raw materials used, the cost of production per brick was $0.091. The ecotoxicology of the powdered brick samples was tested on Raphidocelis subcapitata (microalga) and Daphnia magna (aquatic organism) using leachates from neutral, acidic and basic mediums. Some heavy metals were leached above the threshold limit especially in acidic medium. The leachates were toxic to the test species at low concentrations and resulted in growth inhibition of the microalga and immobization of the aquatic organisms. The toxicity of the CNTs was inconclusive and dedicated tests are required to study their effect. With appropriate treatment of CFA, the waste derived CNT bricks have a great potential of being a sustainable alternative to the conventional bricks based on cost, properties and environmental impact
  • Thumbnail Image
    Item
    Colloidal synthesis and characterization of molybdenum and tungsten-based phosphide electrocatalysts for hydrogen evolution reaction
    (2022) Nkabinde, Siyabonga Sipho; Moloto , Nosipho
    The production of hydrogen gas via hydrogen evolution reaction (HER) in acidic media has become an important area of research in light of the increasing demand for sustainable and environmentally friendly sources of energy. However, its large-scale production is currently being hindered by the lack of inexpensive and highly efficient non-noble electrocatalysts. Transition metal phosphides (TMPs) have transpired as favourable catalysts that can be prepared from cheap and readily available sources. Up to now, TMPs have been commonly prepared using solid-state and solid-gas reactions, which rely on the use of high temperatures and hence generate inhomogeneity in the prepared materials. Inhomogeneous materials are unattractive as catalysts because the correlation between a catalyst and its structural features cannot be systematically studied. For this reason, colloidal synthesis has emerged as a powerful method in the synthesis of TMPs as it allows for control over the resulting physical features (i.e. size, morphology, crystal phase, crystallinity etc.). The ability to tailor these physical properties provides room for improving the catalytic activity. By using the colloidal synthesis method, we have successfully prepared molybdenum and tungsten-based phosphide nanoparticles and studied the effect of their physical features on HER activity. In chapter 3, we report a facile colloidal synthesis method to produce an amorphous phase of molybdenum phosphide (MoP) by using trioctylphosphine (TOP) as a phosphorus source, molybdenum pentachloride (MoCl5) as a metal source and 1-octadecene (1-ODE) as a solvent/reducing agent. The use of the forementioned precursors promoted the formation of very small, shape controlled and well dispersed amorphous molybdenum phosphide (MoP) nanoparticles. Annealing (800 °C) of the amorphous MoP nanoparticles resulted in the formation of a crystalline MoP phase with a slightly bigger size but retained its dispersity and morphology upon exposure to high temperature. The amorphous and crystalline MoP phases were compared as HER electrocatalysts. HER results indicated that the amorphous MoP phase exhibited enhanced catalytic activity in hydrogen evolution reaction compared to the crystalline MoP phase. The high activity displayed by the amorphous MoP was attributed to the small sizes and the high density of unsaturated active sites characteristic of nanoparticles lacking long range crystalline order.