Research Outputs (Mining Engineering)

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/21345

For information on accessing School of Mining Engineering Research Articles content please contact : Salome Potgieter by email : salome.potgieter@wits.ac.za or Tel : 011 717 1961

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Techno-economic optimization of level and raise spacing in Bushveld Complex platinum reef conventional breast mining.
    (The Southern African Institute of Mining and Metallurgy., 2010-08) Musingwini, C.
    The Bushveld Complex is economically significant and strategically important to South Africa, thus it is imperative that optimal extraction of platinum group metal (PGM) resources on the Bushveld Complex is achieved. Optimal extraction broadly requires that the maximum amount of ore is extracted by excavating and hauling the minimum amount of waste in the shortest possible time, at the least cost, and in the safest and most environmentally acceptable manner. In open-pit mine planning this entails among other things, minimizing the waste stripping ratio, whereas in underground mine planning it includes minimizing the metres of waste development In conventional mining, the main development that is in waste or partly in waste and defines the mining grid pattern, includes levels and raises. It was prudent to consider optimizing level and raise spacing in conventional mining because the method is a prevalent mining method on the Bushveld Complex accounting for nearly 70% of platinum production. The techno-economic optimization of level and raise spacing is characteristically a multi-criteria decision analysis (MCDA) optimization process and should therefore be analysed using MCDA techniques. The analytic hierarchy process (AHP) was the most appropriate MCDA technique for this research study. By using an orebody code named OB1 based on real geological data that was typical of Bushveld Complex platinum reef deposits, the derived optimal range of vertical level spacing was 30 m-50 m, and the optimal range of raise spacing was 180 m-220 m. The research methodology used in this study and the results obtained were received positively by the South African platinum mining Industry because for the first time in several decades, a holistic methodology and practically acceptable solution had been developed for the controversial debate of optimizing level and raise spacing for conventional mining.
  • Thumbnail Image
    Item
    Modelling open pit shovel-truck systems using the Machine Repair Model.
    (The Southern African Institute of Mining and Metallurgy., 2007-08) Krause, A.; Musingwini, C.
    Shovel-truck systems for loading and hauling material in open pit mines are now routinely analysed using simulation models or off-the-shelf simulation software packages, which can be very expensive for once-off or occasional use. The simulation models invariably produce different estimations of fleet sizes due to their differing estimations of cycle time. No single model or package can accurately estimate the required fleet size because the fleet operating parameters are characteristically random and dynamic. In order to improve confidence in sizing the fleet for a mining project, at least two estimation models should be used. This paper demonstrates that the Machine Repair Model can be modified and used as a model for estimating truck fleet size in an open pit shovel-truck system. The modified Machine Repair Model is first applied to a virtual open pit mine case study. The results compare favourably to output from other estimation models using the same input parameters for the virtual mine. The modified Machine Repair Model is further applied to an existing open pit coal operation, the Kwagga Section of Optimum Colliery as a case study. Again the results confirm those obtained from the virtual mine case study. It is concluded that the Machine Repair Model can be an affordable model compared to off-the-shelf generic software because it is easily modelled in Microsoft Excel, a software platform that most mines already use. This paper reports part of the work of a MSc research study submitted to the University of Witwatersrand, Johannesburg, South Africa.
  • Thumbnail Image
    Item
    Presidential address: Optimization in underground mine planning-developments and opportunities.
    (The Southern African Institute of Mining and Metallurgy., 2016-09) Musingwini, C.
    The application of mining-specific and generic optimization techniques in the mining industry is deeply rooted in the discipline of operations research (OR). OR has its origins in the British Royal Air Force and Army around the early 1930s. Its development continued during and after World War II. The application of OR techniques to optimization in the mining industry started to emerge in the early 1960s. Since then, optimization techniques have been applied to solve widely different mine planning problems. Mine planning plays an important role in the mine value chain as operations are measured against planned targets in order to evaluate operational performance. An optimized mine plan is expected to be sufficiently robust to ensure that actual outcomes are close or equal to planned targets, provided that variances due to poor performance are minimal. Despite the proliferation of optimization techniques in mine planning, optimization in underground mine planning is less extensively developed and applied than in open pit mine planning. This is due to the fact that optimization in underground mine planning is far more complex than open pit optimization. Optimization in underground mine planning has been executed in four broad areas, namely: development layouts, stope envelopes, production scheduling, and equipment selection and utilization. This paper highlights commonly applied optimization techniques, explores developments and opportunities, and makes a case for integrated three-dimensional (3D) stochastic optimization, in underground mine planning.
  • Thumbnail Image
    Item
    Development of a computer-aided application using Lane's algorithm to optimize cut-off grade.
    (The Southern African Institute of Mining and Metallurgy., 2016-11) Githiria, J.; Musingwini, C.; Muriuki, J.
    The maximization of net present value (NPV) is a primary objective in open pit mine planning processes. In an attempt to meet this objective, cut-off grades are considered in all the stages of mining. There are three stages involved in resource extraction, namely mining, processing, and refining/marketing, which are all defined in Lane's approach. Using Lane's approach, the economics involved in each stage are identified independently and interact to provide an optimum cut-off grade. A hypothetical block model is used to illustrate how a computer application (Cut-off Grade Optimiser) that was developed in this study is used in the optimization of cut-off grades using Lane's algorithm. This paper analyses the application of Lane's approach for a single element in cut-off grade optimization as applied in the calculation of the optimum cut-off grade through a computer-Aided application. Although Lane's approach is not complex it is not widely applied to maximize the NPV of mining operations as the iterative calculations can be lengthy. The computer application developed in this study shows how Lane's algorithm combined with a linear programming function can optimize cut-off grade with regard to the complex situations faced by mining operations. The application saves users from performing otherwise lengthy, iterative calculations.