Research Articles

Permanent URI for this collection


Recent Submissions

Now showing 1 - 5 of 14
  • Item
    Mathematical analysis of a lymphatic filariasis model with quarantine and treatment
    (BioMed Central Ltd., 2017-03) Mwamtobe, P.M.; Simelane, S.M.; Abelman, S.; Tchuenche, J.M.
    Background: Lymphatic filariasis is a globally neglected tropical parasitic disease which affects individuals of all ages and leads to an altered lymphatic system and abnormal enlargement of body parts. Methods: A mathematical model of lymphatic filariaris with intervention strategies is developed and analyzed. Control of infections is analyzed within the model through medical treatment of infected-acute individuals and quarantine of infected-chronic individuals. Results: We derive the effective reproduction number, R 0 , $\mathcal {R}_{0},$ and its interpretation/investigation suggests that treatment contributes to a reduction in lymphatic filariasis cases faster than quarantine. However, this reduction is greater when the two intervention approaches are applied concurrently. Conclusions: Numerical simulations are carried out to monitor the dynamics of the filariasis model sub-populations for various parameter values of the associated reproduction threshold. Lastly, sensitivity analysis on key parameters that drive the disease dynamics is performed in order to identify their relative importance on the disease transmission.
  • Item
    Heat Transfer in a Porous Radial Fin: Analysis of Numerically Obtained Solutions
    (Hindawi Publishing Corporation, 2017) Jooma, R.; Harley, C.
    A time dependent nonlinear partial differential equation modelling heat transfer in a porous radial fin is considered. The Differential Transformation Method is employed in order to account for the steady state case. These solutions are then used as a means of assessing the validity of the numerical solutions obtained via the Crank-Nicolson finite difference method. In order to engage in the stability of this scheme we conduct a stability and dynamical systems analysis. These provide us with an assessment of the impact of the nonlinear sink terms on the stability of the numerical scheme employed and on the dynamics of the solutions.
  • Item
    Inequalities of harmonic univalent functions with connections of hypergeometric functions
    (DE GRUYTER OPEN LTD, BOGUMILA ZUGA 32A ST, 01-811 WARSAW, POLAND, 2015) Sokol, Janusz; Ibrahim, Rabha W.; Ahmad, M. Z; Al-Janaby, Hiba F.
    Let SH be the class of functions f = h + (g) over bar that are harmonic univalent and sense-preserving in the open unit disk U = {z : vertical bar z vertical bar < 1} for which f(0) = f'(0) - 1 = 0. In this paper, we introduce and study a subclass H(alpha, beta)of the class SH and the subclass NH(alpha, beta) with negative coefficients. We obtain basic results involving sufficient coefficient conditions for a function in the subclass H(alpha, beta) and we show that these conditions are also necessary for negative coefficients, distortion bounds, extreme points, convolution and convex combinations. In this paper an attempt has also been made to discuss some results that uncover some of the connections of hypergeometric functions with a subclass of harmonic univalent functions.
  • Item
    New integral inequalities of hermite-hadamard type for n-times differentiable s-logarithmically convex functions with applications.
    (University of Miskolc, 2015-09) Latif, M.A.; Dragomir, S.S.
    In this paper, some new integral inequalities of Hermite-Hadamard type are presented for functions whose nth derivatives in absolute value are s-logarithmically convex. From our results, several inequalities of Hermite-Hadamard type can be derived in terms of functions whose first and second derivatives in absolute value are s-logarithmically convex functions as special cases. Our results may provide refinements of some results for s-logarithmically convex functions already exist in literature. Finally, applications to special means of the established results are given.
  • Item
    Analysis of binary multivariate longitudinal data via 2-dimensional orbits: An application to the Agincourt Health and Socio-Demographic Surveillance System in South Africa.
    (Public Library of Science, 2015-04) Visaya, M.V.; Sherwell, D.; Sartorius, B.; Cromieres, F.
    We analyse demographic longitudinal survey data of South African (SA) and Mozambican (MOZ) rural households from the Agincourt Health and Socio-Demographic Surveillance System in South Africa. In particular, we determine whether absolute poverty status (APS) is associated with selected household variables pertaining to socio-economic determination, namely household head age, household size, cumulative death, adults to minor ratio, and influx. For comparative purposes, households are classified according to household head nationality (SA or MOZ) and APS (rich or poor). The longitudinal data of each of the four subpopulations (SA rich, SA poor, MOZ rich, and MOZ poor) is a five-dimensional space defined by binary variables (questions), subjects, and time. We use the orbit method to represent binary multivariate longitudinal data (BMLD) of each household as a two-dimensional orbit and to visualise dynamics and behaviour of the population. At each time step, a point (x, y) from the orbit of a household corresponds to the observation of the household, where x is a binary sequence of responses and y is an ordering of variables. The ordering of variables is dynamically rearranged such that clusters and holes associated to least and frequently changing variables in the state space respectively, are exposed. Analysis of orbits reveals information of change at both individual- and population-level, change patterns in the data, capacity of states in the state space, and density of state transitions in the orbits. Analysis of household orbits of the four subpopulations show association between (i) households headed by older adults and rich households, (ii) large household size and poor households, and (iii) households with more minors than adults and poor households. Our results are compared to other methods of BMLD analysis.