Electronic Theses and Dissertations (PhDs)
Permanent URI for this collectionhttps://hdl.handle.net/10539/38005
Browse
Item 3D Human pose estimation using geometric self-supervision with temporal methods(University of the Witwatersrand, Johannesburg, 2024-09) Bau, Nandi; Klein, RichardThis dissertation explores the enhancement of 3D human pose estimation (HPE) through self-supervised learning methods that reduce reliance on heavily annotated datasets. Recognising the limitations of data acquired in controlled lab settings, the research investigates the potential of geometric self-supervision combined with temporal information to improve model performance in real-world scenarios. A Temporal Dilated Convolutional Network (TDCN) model, employing Kalman filter post-processing, is proposed and evaluated on both ground-truth and in-the-wild data from the Human3.6M dataset. The results demonstrate a competitive Mean Per Joint Position Error (MPJPE) of 62.09mm on unseen data, indicating a promising direction for self-supervised learning in 3D HPE and suggesting a viable pathway towards reducing the gap with fully supervised methods. This study underscores the value of self-supervised temporal dynamics in advancing pose estimation techniques, potentially making them more accessible and broadly applicable in real-world applications.Item Play-style Identification and Player Modelling for Generating Tailored Advice in Video Games(University of the Witwatersrand, Johannesburg, 2023-09) Ingram, Branden Corwin; Rosman, Benjamin; Van Alten, Clint; Klein, RichardRecent advances in fields such as machine learning have enabled the development of systems that are able to achieve super-human performance on a number of domains, specifically in complex games such as Go and StarCraft. Based on these successes, it is reasonable to ask if these learned behaviours could be utilised to improve the performance of humans on the same tasks. However, the types of models used in these systems are typically not easily interpretable, and can not be directly used to improve the performance of a human. Additionally, humans tend to develop stylistic traits based on preference which aid in solving problems or competing at high levels. This thesis looks to address these difficulties by developing an end-to-end pipeline that can provide beneficial advice tailored to a player’s style in a video game setting. Towards this end, we demonstrate the ability to firstly cluster variable length multi-dimensional gameplay trajectories with respect to play-style in an unsupervised fashion. Secondly, we demonstrate the ability to learn to model an individual player’s actions during gameplay. Thirdly we demonstrate the ability to learn policies representative of all the play-styles identified with an environment. Finally, we demonstrate how the utilisation of these components can generate advice which is tailored to the individual’s style. This system would be particularly useful for improving tutorial systems that quickly become redundant lacking any personalisation. Additionally, this pipeline serves as a way for developers to garner insights on their player base which can be utilised for more informed decision-making on future feature releases and updates. For players, they gain a useful tool which can be utilised to learn how to play better as well identify as the characteristics of their gameplay as well as opponents. Furthermore, we contend that our approach has the potential to be employed in a broad range of learning domains.