Volume 52 2017–2018
Permanent URI for this collection
Browse
Browsing Volume 52 2017–2018 by Type "Article"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Biofilm assists recognition of avian trackways in Late Pleistocene coastal aeolianites, South Africa(Evolutionary Studies Institute, 2017-12) Helm, Charles W.; Anderson, Robert J.; Buckley, Lisa G.; Cawthra, Hayley C.; de Vynck, Jan C.Fourteen fossil avian tracksites have been identified in Late Pleistocene aeolianite deposits on the Cape south coast of SouthAfrica. One of these sites is unusual because of the preferential adherence of organic material (biofilm) to the natural cast tracks. This has enabled the recognition and identification of two ~6 m long, approximately parallel trackways that would otherwise not have been noticed. The trackways are visible from a distance of over 100 metres and contain 20 and 14 individual tracks, respectively. Up to 50 avian tracks are evident at this site. As the biofilm layer continues to thicken, the trackways become increasingly visible. Avian trackways of this length are globally rare.We propose that the biofilm adheres to sections with higher relief on a sedimentary surface, and that an understanding of this mode of preservation can be useful to more easily identify trackways in areas of comparable geological setting.Item The bony labyrinth of late Permian Biarmosuchia: palaeobiology and diversity in non-mammalian Therapsida(2017-07) Benoit, Julien; Manger, Paul R; Fernandez, Vincent; Rubidge, Bruce SBiarmosuchia, as the basalmost group of Therapsida (the stem group of mammals), are important for understanding mammalian origins and evolution. Unlike other therapsid groups, the bony labyrinth of biarmosuchians has not yet been studied, despite insightful clues that bony labyrinth morphology can provide to address palaeobiology and phylogeny of extinct animals. Here, using CT scanning, surface reconstruction and a 3D geometric-morphometric protocol of 60 semi-landmarks on the bony labyrinth of 30 therapsids (including three Mammaliaformes), it is demonstrated that bony labyrinth morphology of biarmosuchians is very distinctive compared to that of other therapsids. Despite the primitive nature of their cranial morphology, biarmosuchians display highly derived traits in the structure of the bony labyrinth. The most noticeable are the presence of a long and slender canal linking the vestibule to the fenestra vestibuli, an enlarged and dorsally expanded anterior canal, and the absence of a secondary common crus (except for one specimen), which sets them apart from other non-mammalian therapsids. These characters provide additional support for the monophyly of Biarmosuchia, the most recently recognized major therapsid subclade. Although implications of the derived morphology of the biarmosuchian bony labyrinth are discussed, definitive interpretations are dependent on the discovery of well-preserved postcranial material. It nevertheless sheds light on a previously overlooked diversity of bony labyrinth morphology in non-mammalian therapsids.Item Cranial morphology and phylogenetic analysis of Cynosaurus suppostus (Therapsida, Cynodontia) from the upper Permian of the Karoo Basin, South Africa(Evolutionary Studies Institute, 2018-03) van den Brandt, Marc; Abdala, FernandoNon-mammaliaform cynodonts are an important fossil lineage which include the ancestors of mammals and which illustrate the gradual evolution of mammalian characteristics. The earliest cynodonts (‘basal cynodonts’) are known from the late Permian. Cynosaurus suppostus is the second most abundant basal cynodont from the late Permian of the Karoo Basin of SouthAfrica, but is poorly studied, with the most recent description of this taxon being 50 years old. Since then, several important new specimens of this species have been collected, meriting a thorough description of its cranial anatomy and exploration of its interspecific variation. Here we present a comprehensive description of the cranial morphology of Cynosaurus suppostus, producing an updated diagnosis for the species and comparisons amongst basal cynodonts. Cynosaurus is identified by three autapomorphies amongst basal cynodonts: a subvertical mentum on the anterior lower jaw; a robust mandible with a relatively high horizontal ramus; and the broadest snout across the canine region, representing up to 31.74% of basal skull length. One of the new specimens described here preserves orbital scleral ossicles, structures rarely preserved in non-mammaliaform cynodonts. Cynosaurus is now only the third cynodont in which scleral ossicles have been reported.Anupdated phylogenetic analysis of basal cynodont interrelationships recovered Cynosaurus suppostus as a member of the Galesauridae in only two of 16 most parsimonious trees, providing poor support for its inclusion in that family. The majority of known Cynosaurus specimens were collected in a geographically restricted area approximately 150 kilometres in diameter. Most specimens have been recovered from the latest Permian Daptocephalus Assemblage Zone, with only two specimens known from the older Cistecephalus Assemblage Zone.Item The first skeletal evidence of a dicynodont from the lower Elliot Formation of South Africa(Evolutionary Studies Institute, 2018) Kammerer, Christian F.Historical fossil specimens from the lower Elliot Formation are identified as representing a large-bodied dicynodont, the first known from skeletal material in the Late Triassic of South Africa. Although fragmentary, these fossils differ from all other known Triassic dicynodonts and are here described as a new taxon, Pentasaurus goggai gen. et sp. nov. Pentasaurus can be distinguished from other Triassic dicynodonts by a number of mandibular characters, most importantly the well-developed, unusually anteriorly-positioned lateral dentary shelf. Phylogenetic analysis indicates that Pentasaurus is a placeriine stahleckeriid. Placeriines include the latestsurviving dicynodonts but their remains are primarily known from the Northern Hemisphere, with their only previously-known Southern Hemisphere representative being the Middle Triassic Zambian taxon Zambiasaurus. The discovery of a placeriine in the Late Triassic of SouthAfrica supports recent proposals that local climatic conditions, not broad-scale biogeographic patterns, best explain the observed distribution of Triassic tetrapods. The tetrapod fauna of the lower Elliot Formation is highly unusual among Triassic assemblages in combining ‘relictual’ taxa like dicynodonts and gomphodont cynodonts with abundant, diverse sauropodomorph dinosaurs.Item Fossil trees from the basal Triassic Lebung Group at the Makgaba site, west of Mokubilo, Botswana(Evolutionary Studies Institute, 2018-03) de Wit, Michael; Bamford, Marion; van Waarden, CFossil wood samples were collected from an area underlain by Karoo Supergroup rocks along the southern edge of Sua Pan in east central Botswana. From the local stratigraphy it suggests that these fossils have been derived from the Mosu sandstones that occurs at the base of the Mosolotsane Formation and which is time-equivalent to the Molteno Formation in South Africa that is of Triassic age. Based on the arrangement of tracheid pits the fossil wood has been identified as Agathoxylon, and most likely Agathoxylon africanum. This species has a Permian to Triassic time range in southern Africa and probably is the first published record of Agathoxylon africanum in Botswana.Item Late Pleistocene vertebrate trace fossils in the Goukamma Nature Reserve, Cape South Coast, South Africa(Evolutionary Studies Institute, 2018-02) Helm, Charles W.; McCrea, Richard T.; Lockley, Martin G.; Cawthra, Hayley C.; Thesen, Guy H. H.; Mwankunda, Joshua M.More than 100 Late Pleistocene trace fossil sites have been identified in aeolianites along a 275 kilometer stretch of the Cape south coast. A zone of concentration of such sites exists within the Goukamma Nature Reserve, both along the coast and along the Goukamma River. These sites provide insight into the Pleistocene fauna along the Cape south coast. Features include lion trackways, multiple elephant tracksites, a long trackway most likely attributable to Long-horned Buffalo, medium-sized carnivore tracks, avian tracks, equid tracks attributable to the giant Cape horse, numerous artiodactyl tracks, and burrow traces. The ephemeral nature of the tracksites makes regular surveys of these areas desirable, along with site documentation and trackway replication and preservation initiatives. The protected status of the area offers opportunities for geoheritage appreciation.Item Palynological dating and palaeoenvironments of the M1 well, Middle Miocene, Niger Delta, Nigeria(2017-07) Durugbo, Ernest Uzodimma; Olayiwola, Moshood AdegboyegaThe need to increase our knowledge of palaeo-flora is important in palaeoclimatic and palaeoenvironmental reconstruction of the Tertiary Niger Delta as to highlight possible changes in the depositional environments over time. Hence, palynological data from the M1well from the western Niger Delta region were employed in an attempt to reconstruct the Middle Miocene palaeoenvironment and palaeoclimate. The detailed palynological analysis revealed diverse and abundant palynomorph assemblages. This consisted of pollen species 60.14%, spores 25.86%, algae (Botyococcus braunii, Pediastrum sp., and Concentricytes circulus) 10.53%, miscellaneous palynomorphs (fungal elements, diatom frustules and charred Gramineae cuticle) 2.62%, dinoflagellate cysts 0.79% and acritarchs 0.06%. The well is dated Middle Miocene based on the common occurrences of diagnostic middle Miocene Niger Delta palynomorphs. Four informal palynofloral assemblage zones (MPAZ) I–IV were defined and correlated with major cycles of alternating dry and wet climatic conditions. Sediments within MPAZ I and MPAZ II were assumed to have been deposited during dominantly wet periods while MPAZ IV and III showed brief dry pulses coupled with periods of marine transgressions. The palaeoenvironment fluctuated between nearshore and marginal marine inferred from abundant records of land-derived palynomorphs and the spotty records of the dinoflagellate cysts Nematosphaeropsis labyrinthus, Nematosphaeropsis lemniscata and Impagidinium sp.Item Rediscovery of the holotype of Clelandina major Broom, 1948 (Gorgonopsia: Rubidgeinae) with implications for the identity of this species(Evolutionary Studies Institute, 2017-12) Kammerer, Christian F.No specimen number was given for the holotype of the rubidgeine gorgonopsian species Clelandina major Broom, 1948 in its original description. Historically, a specimen in the Rubidge Collection (RC 94) was considered to represent Broom’s type specimen for C. major. However, recent study has revealed that the holotype of C. major is in fact a different specimen in the McGregor Museum in Kimberley (MMK 5031). The morphology of this specimen is consistent with the genus Clelandina, contra work based on RC 94 that considered C. major referable toAelurognathus. Clelandina major is here considered synonymous with the type species Clelandina rubidgei.MMK5031 represents only the fifth known specimen of this rare and unusual gorgonopsian.