School of Computer Science and Applied Mathematics (ETDs)
Permanent URI for this community
Browse
Browsing School of Computer Science and Applied Mathematics (ETDs) by Keyword "Astrophysics"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Using Machine Learning to Estimate the Photometric Redshift of Galaxies(University of the Witwatersrand, Johannesburg, 2023-08) Salim, Shayaan; Bau, Hairong; Komin, NukriMachine learning has emerged as a crucial tool in the field of cosmology and astrophysics, leading to extensive research in this area. This research study aims to utilize machine learning models to estimate the redshift of galaxies, with a primary focus on utilizing photometric data to obtain accurate results. Five machine learning algorithms, including XGBoost, Random Forests, K-nearest neighbors, Artificial Neural Networks, and Polynomial Regression, are employed to estimate the redshifts, trained on photometric data derived from the Sloan Digital Sky Survey (SDSS) Data Release 17 database. Furthermore, various input parameters from the SDSS database are explored to achieve the most accurate redshift values. The research incorporates a comparative analysis, utilizing different evaluation metrics and statistical tests to determine the best-performing algorithm. The results indicate that the XGBoost algorithm achieves the highest accuracy, with an R2 value of 0.94, a Root Mean Square Error (RMSE) of 0.03, and a Mean Absolute Average Percentage (MAPE) of 12.04% when trained on the optimal feature subset. In comparison, the base model achieved an R2 of 0.84, a RMSE of 0.05, and a MAPE of 20.89%. The study contributes to the existing literature by utilizing photometric data during model training and comparing different high-performing algorithms from the literature.