School of Molecular and Cell Biology
Permanent URI for this community
Browse
Browsing School of Molecular and Cell Biology by Author "Jovanovic, K."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item High resolution imaging study of interactions between the 37 kDa/67 kDa laminin receptor and APP, beta-secretase and gamma-secretase in Alzheimer's disease.(Public Library of Science., 2014-06-27) Jovanovic, K.; Loos, B.; Da Costa Dias, B.; Penny, C.; Weiss, S.F.T.Alzheimer's disease (AD) is the most prevalent form of dementia affecting the elderly. Neurodegeneration is caused by the amyloid beta (Aβ) peptide which is generated from the sequential proteolytic cleavage of the Amyloid Precursor Protein (APP) by the β- and γ- secretases. Previous reports revealed that the 37 kDa/67 kDa laminin receptor (LRP/LR) is involved in APP processing, however, the exact mechanism by which this occurs remains largely unclear. This study sought to assess whether LRP/LR interacted with APP, β- or γ-secretase. Detailed confocal microscopy revealed that LRP/LR showed a strong co-localisation with APP, β- and γ-secretase, respectively, at various sub-cellular locations. Superresolution Structured Illumination Microscopy (SR-SIM) showed that interactions were unlikely between LRP/LR and APP and β-secretase, respectively, while there was strong co-localisation between LRP/LR and γ-secretase at this 80 nm resolution. FRET was further employed to assess the possibility of protein-protein interactions and only an interaction between LRP/LR and γ-secretase was found. FLAG co-immunoprecipitation confirmed these findings as LRP/LR co-immunoprecipitated with γ-secretase, but failed to do so with APP. These findings indicate that LRP/LR exerts its influence on Aβ shedding via a direct interaction with the γ-secretase and possibly an indirect interaction with the β-secretase.Item Knockdown of LRP/LR Induces Apoptosis in breast and oesophageal cancer cells.(2015-10-01) Khumalo, T.; Ferreira, E.; Jovanovic, K.; Veale, R.B.; Weiss, S.F.T.Cancer is a global burden due to high incidence and mortality rates and is ranked the second most diagnosed disease amongst non-communicable diseases in South Africa. A high expression level of the 37kDa/67kDa laminin receptor (LRP/LR) is one characteristic of cancer cells. This receptor is implicated in the pathogenesis of cancer cells by supporting tumor angiogenesis, metastasis and especially for this study, the evasion of apoptosis. In the current study, the role of LRP/LR on cellular viability of breast MCF-7, MDA-MB 231 and WHCO1 oesophageal cancer cells was investigated. Western blot analysis revealed that total LRP expression levels of MCF-7, MDA-MB 231 and WHCO1 were significantly downregulated by targeting LRP mRNA using siRNA-LAMR1. This knockdown of LRP/LR resulted in a significant decrease of viability in the breast and oesophageal cancer cells as determined by an MTT assay. Transfection of MDA-MB 231 cells with esiRNA-RPSA directed against a different region of the LRP mRNA had similar effects on LRP/LR expression and cell viability compared to siRNA-LAMR1, excluding an off-target effect of siRNALAMR1. This reduction in cellular viability is as a consequence of apoptosis induction as indicated by the exposure of the phosphatidylserine protein on the surface of breast MCF-7, MDA-MB 231 and oesophageal WHCO1 cancer cells, respectively, detected by an Annexin-V/FITC assay as well as nuclear morphological changes observed post-staining with Hoechst. These observations indicate that LRP/LR is crucial for the maintenance of cellular viability of breast and oesophageal cancer cells and recommend siRNA technology targeting LRP expression as a possible novel alternative technique for breast and oesophageal cancer treatment.