Forward scattering on the line with a transfer condition

dc.citation.doi10.1186/1687-2770-2013-255en_ZA
dc.citation.issue1en_ZA
dc.contributor.authorCurrie, Sonja
dc.contributor.authorNowaczyk, Marlena
dc.contributor.authorWatson, Bruce A.
dc.date.accessioned2016-10-04T11:42:09Z
dc.date.available2016-10-04T11:42:09Z
dc.date.issued2013-12
dc.description.abstractWe consider scattering on the line with a transfer condition at the origin. Under suitable growth conditions on the potential, the spectrum consists of a finite number of eigenvalues which are negative real numbers, while the remainder is continuous spectrum which is comprised of the positive real axis. Asymptotics are provided for the Jost solutions. Conditions which characterize transfer conditions resulting in self-adjoint problems are found. Properties are given of the scattering coefficient linking it to the spectrum.en_ZA
dc.description.librarianSP2016en_ZA
dc.facultyFaculty of Science
dc.identifier.citationCurrie, Sonja; Nowaczyk, Marlena and Watson, Bruce A. 2013. Forward scattering on the line with a transfer condition. Boundary Value Problems 2013 (1): 255.en_ZA
dc.identifier.issn1687-2762 (print)
dc.identifier.issn1687-2770 (online)
dc.identifier.urihttp://hdl.handle.net/10539/21125
dc.journal.titleBoundary Value Problemsen_ZA
dc.language.isoenen_ZA
dc.publisherSpringerOpen [Commercial Publisher]en_ZA
dc.rights©2013 Currie et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_ZA
dc.schoolSchool of Mathematics
dc.subjectscatteringen_ZA
dc.subjecttransfer conditionen_ZA
dc.subjectasymptoticsen_ZA
dc.subjectJost solutionsen_ZA
dc.subjectspectrumen_ZA
dc.titleForward scattering on the line with a transfer conditionen_ZA
dc.typeArticleen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Forward scattering on the line with a transfer condition.pdf
Size:
355.4 KB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: