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Abstract
We consider scattering on the line with a transfer condition at the origin. Under
suitable growth conditions on the potential, the spectrum consists of a finite number
of eigenvalues which are negative real numbers, while the remainder is continuous
spectrum which is comprised of the positive real axis. Asymptotics are provided for
the Jost solutions. Conditions which characterize transfer conditions resulting in
self-adjoint problems are found. Properties are given of the scattering coefficient
linking it to the spectrum.
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1 Introduction
The mathematical analysis of scattering theory has been a major area of interest in math-
ematics and physics research since the latter half of the twentieth century. In this work we
investigate forward scattering for the differential equation

�y := –
dy
dx

+ q(x)y = ζ y, on (–∞, )∪ (,∞), (.)

in L(–∞, )⊕ L(,∞) = L(R) with the point transfer condition
[
y(+)
y′(+)

]
=M

[
y(–)
y′(–)

]
. (.)

Here, the entries of M are taken to be real, q ∈ L(R) is assumed to be real-valued and
obey the growth condition

∫ ∞

–∞

(
 + |x|)∣∣q(x)∣∣dx < ∞. (.)

Note that (.) gives that q ∈ L. Denote f (+) := limt↓ f (t) and f (–) := limt↑ f (t). The
operator L in L(R) is defined by

Ly = �y (.)

on R \ {} for y in the domain D(L) of L, where

D(L) =
{
y | y,�y ∈ L(R), y|(j)(–∞,), y|(j)(,∞) ∈ AC, j = , , y obeys (.)

}
. (.)
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Only point transfermatrices at the originwill be considered, and henceforthwewill refer
to them as transfer matrices. In [] conditions for self-adjointness and limit point/limit
circle criteria are considered for a more general problem.
In the physical context, the transfer matrix represents a change of mediumwhich affects

the incident wave as represented by components of the matrix. Livšic in [, p.] gives a
concrete physical example of a scattering problem of the form given above. He considers
a uniform, infinite string, attached at the point x =  to a transverse spring. The behaviour
at the point of attachment is described by what we have called the transfer matrixM.
Our transfer matrices will be real constant transfer matrices, i.e., all components will be

constants. The theory could be extended to eigenparameter-dependent transfer matrices,
this will be considered in future studies. Gordon and Pearson, in [], characterized the
self-adjoint constant point transfer matrices as well as eigenparameter-dependent ones.
The Jost solutions of (.) represent oscillations moving left or right on R. The scatter-

ing data is defined in terms of these solutions. The classical Jost solutions correspond to
the case where the transfer matrixM is the identity. In particular, asymptotic approxima-
tions to the classical Jost solutions and their derivatives, as well as some basic relations
regarding them, are given. The Jost solutions for the scattering problem with a transfer
condition (M 	= I) are then expressed in terms of the classical Jost solutions. Consequently,
we consider functional analytic aspects of the operator L such as location of eigenvalues
and continuous spectrum, multiplicity of eigenvalues, properties of the scattering coeffi-
cients/scattering matrix and the reflection coefficient. We show that the operator L has
finitely many eigenvalues, they are negative and simple, and that the positive real axis
[,∞) is the continuous spectrum of L.
This paper is structured as follows. The Jost solutions of the scattering problem (.)

and (.) are defined in Section . In addition, some basic properties and asymptotic ap-
proximations of the classical Jost solutions and their derivatives are recalled. In Section ,
the scattering problem is reformulated as a system spectral problem, and we prove that
L is self-adjoint if and only if detM = . Moreover, it is shown that all the eigenvalues are
negative and that the entire non-negative real half-line is the continuous spectrum of L.
In Section , since the scattering problem (.) and (.) can be considered as two half-line
problems, the Jost solutions are expressed in terms of the classical Jost solutions. Asymp-
totics for the scattering coefficients are determined, and we prove that the problem has
finitely many eigenvalues all of which are simple. In the final section, Section , we give
a relationship between the norming constants and the derivative of the scattering coeffi-
cient.
The results obtained in this paper provide the foundation needed in order to consider

the associated inverse problem, this will be the topic of a subsequent paper.

2 Preliminaries
In this section, asymptotic solutions y(x, ζ ), (x, ζ ) ∈ R×C

+, will be developed for equation
(.) for large values of |x|+ |ζ |, where C+ = {ξ + iη | ξ ,η ∈ R,η ≥ }. The focus of this sec-
tion will be on the so-called Jost solutions of (.) and their derivatives. The Jost solutions
f+,M and f–,M of (.) and (.) are the solutions of (.) and (.) defined by their asymptotic
behaviour at ±∞ as follows.
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Definition . [, p.] The Jost solutions f+,M(x, ζ ) and f–,M(x, ζ ) are the solutions of
(.) and (.) with

lim
x→∞ e–iζxf+,M(x, ζ ) = ,

lim
x→–∞ eiζxf–,M(x, ζ ) = .

WhenM = I , the subscriptM will be dropped. In this case, the existence and asymptotic
behaviour of the Jost solutions are well known, see [, ]. In particular,

f+(x, ζ ) = eiζx +O
(
C(x)ρ(x)e–ηx

 + |ζ |
)
, (.)

df+
dx

(x, ζ ) = iζ eiζx –
∫ ∞

x
cos

(
ζ (x – τ )

)
q(τ )eiζτ dτ +O

(
C(x)ρ(x)σ (x)e–ηx

 + |ζ |
)

(.)

and

f–(x, ζ ) = e–iζx +O
(
C(–x)ρ̃(x)eηx

 + |ζ |
)
, (.)

df–
dx

(x, ζ ) = –iζ e–iζx +
∫ x

–∞
cos

(
ζ (x – τ )

)
q(τ )e–iζτ dτ +O

(
C(–x)ρ̃(x)σ̃ (x)eηx

 + |ζ |
)
, (.)

as |x|+ |ζ | → ∞, where η = �(ζ ). Here, C(x) is a non-negative, non-increasing function of
x and

ρ(x) =
∫ ∞

x

(
 + |τ |)∣∣q(τ )∣∣dτ ,

ρ̃(x) =
∫ x

–∞

(
 + |τ |)∣∣q(τ )∣∣dτ ,

σ (x) =
∫ ∞

x

∣∣q(τ )∣∣dτ ,

σ̃ (x) =
∫ x

–∞

∣∣q(τ )∣∣dτ .

Let ζ be real and denote ζ = ξ ∈R. Then as ξ = ξ , f +(x, ξ ) obeys equations (.) and (.)
withM = I . Taking the conjugate of the integral equation

f+(x, ξ ) = eiξx –
∫ ∞

x

sin(ξ (x – τ ))
ξ

q(τ )f+(τ , ξ )dτ , (.)

which defines f+, gives

f +(x, ξ ) = e–iξx –
∫ ∞

x

sin(–ξ (x – τ ))
(–ξ )

q(τ )f +(τ , ξ )dτ .

From the above two expressions and the uniqueness of the solution of (.), we have

f +(x, ξ ) = f+(x, –ξ ), ξ ∈R. (.)

http://www.boundaryvalueproblems.com/content/2013/1/255
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The asymptotic results given earlier in this section obviously hold for the conjugate solu-
tion f +(x, ξ ) but with the simplification that η =  in this case. In particular,

f +(x, ξ ) = e–iξx +O
(
C(x)ρ(x)
 + |ξ |

)
, (.)

df +
dx

(x, ξ ) = –iξe–iξx +
∫ ∞

x
cos

(
ξ (x – τ )

)
q(τ )e–iξτ dτ +O

(
C(x)ρ(x)σ (x)

 + |ξ |
)
, (.)

where C(x) is non-increasing and ρ and σ are as defined earlier.
Note that the Wronskian, W [f+, f +], of f+ and f + for ξ ∈ R and x ∈ R is given by

W [f+, f +](x, ξ ) = –iξ , see []. Thus f+(x, ξ ) and f +(x, ξ ) = f+(x, –ξ ) for ξ = ζ ∈ R \ {} are
independent.

3 Nature of the spectrum
Here we consider the scattering problem on the line with transfer condition (.) at x = .
In order for (.) and (.) to be self-adjoint in L((–∞, ) ∪ (,∞)) = L(R), the transfer
matrix M will have to be of a certain form. Here, we restrict our attention to the most
interesting case ofM invertible, the case ofM non-invertible will be considered elsewhere.
The scattering problem can then be treated as two classical half-line problems joined at
the origin by matrix condition (.).
The operator eigenvalue problem associated with L, of (.), can be reformulated as a

system eigenvalue problem as follows. Let y(t) = y(t), y(t) = y(–t) and Y (t) =
( y(t)
y(t)

)
and

consider the differential operator in L(,∞)⊕ L(,∞) given by

TY := –
dY
dx

+QY = ζ Y , (.)

where Q(t) =
( q(t) 

 q(–t)
)
. The domain of T is given by

D(T) =
{
Y | Y ,TY ∈ (

L(,∞)
),Y ,Y ′ ∈ AC,UY () = VY ′()

}
, (.)

where U =
(  –m
 m

)
and V =

(  –m
 m

)
. Here, mij, for i, j = , , are the entries of the transfer

matrixM. As the norm on L(,∞)⊕ L(,∞), we take

‖Y‖ =
∫ ∞


YTY dx.

It should be noted here that L and T are unitarily equivalent by the map 	 : L(R) →
(L(,∞)) given by 	y =

( y
y

)
, where

y(t) =

{
y(t), t > ,
y(–t), t < .

It is easily verified that 	 is a bijective isometry between L(R) and (L(,∞)) with the
additional properties that 	(D(L)) =D(T) and 	–T	 = L.
The transfer matrix scattering problem can now be posed as

TY = ζ Y , Y ∈D(T). (.)

http://www.boundaryvalueproblems.com/content/2013/1/255
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Let F ,G ∈D(T). Define

S(F ,G) := 〈TF ,G〉 – 〈F ,TG〉 for F ,G ∈D(T),

where

〈F ,G〉 =
∫ ∞


F(x)TG(x)dx. (.)

We now obtain conditions on the transfer matrix which ensure that T is a self-adjoint
operator. We begin by defining the minimal and maximal operators associated with T .
The minimal operator associated with T is T which is given by

D(T) =
{
F ∈ (

L(,∞)
) | F ,F ′ ∈ AC,F() = F ′() = 

}
with

TF = TF for F ∈D(T).

The maximal operator associated with T is Tmax = T∗
 , where

D(Tmax) =
{
F ∈ (

L(,∞)
) | F ,F ′ ∈ AC

}
.

Note that T has deficiency indices (, ).

Theorem . If detM 	= , then the operator L is a self-adjoint operator if and only if
detM = .

Proof We will prove the result for the operator T and, consequently, it will be true for the
operator L.
Let F =

( f
f

)
,G =

( g
g

) ∈ (C(,∞)) such that F(x) = G(x) =  for all x ≥ K . Then, since
q ∈ L(R), F ,G ∈D(Tmax). Also,

〈TmaxF ,G〉 – 〈F ,TmaxG〉 = 〈TF ,G〉 – 〈F ,TG〉

= S(F ,G) =
∫ ∞



(
fg ′′

 – f ′′
 g + fg ′′

 – f ′′
 g

)
dx

= –
(
fg ′

 – f ′
 g + fg ′

 – f ′
g

)
().

As the deficiency indices of T are (, ), we need to restrict the domain of Tmax by two
boundary conditions to ensure self-adjointness, seeWeidmann [, p.]. For the operator
to be self-adjoint with two linear domain conditions, they must ensure that (fg ′

 – f ′
 g +

fg ′
 – f ′

g)() = .
We now show what the above condition implies in terms of the transfer matrixM,

S(F ,G) = –
(
FTG′ – F ′TG

)
()

= –
[
FT ,F ′T](

 I
–I 

)[
G
G′

]
().
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Denote J =
(  I
–I 

)
, then we have that JT = –J and J = –I .

Let U and V be as in (.), then if F ,G ∈D(T) we have

�U�G() = �V�G′()

and

FT ()UT = F ′T ()VT .

So

[
F
F ′

]
(),

[
G
G′

]
() ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α

⎡
⎢⎢⎢⎣
detM
m


m

⎤
⎥⎥⎥⎦ + β

⎡
⎢⎢⎢⎣


–m

detM
–m

⎤
⎥⎥⎥⎦ : α,β ∈C

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,

where

[ detM
m


m

]
and

[ 
–m
detM
–m

]
are linearly independent. Thus we require

⎡
⎢⎢⎢⎣
detM 
m –m

 detM
m –m

⎤
⎥⎥⎥⎦

T [
 I
–I 

]⎡
⎢⎢⎢⎣
detM 
m –m

 detM
m –m

⎤
⎥⎥⎥⎦ = .

Thus (detM) = –mm +mm = detM giving that detM =  sinceM is invertible. �

It should be noted that in [] a condition on the transfer matrix M is given for self-
adjointness; however, for the case of detM 	= , where the entries of M are real, the proof
presented above is substantially simpler.
Throughout the remainder of the paper, we will now assume that detM = .

Theorem . Let detM = . All eigenvalues (if any) of L as defined in (.), (.), and con-
sequently of T , are negative.

Proof For λ = ζ  ∈R\{}, f+ and f + constitute an independent set of solutions to equation
(.). If L has a positive eigenvalue λ = ξ  > , where ξ > , then L has an eigenfunction of
the form

F(x, ξ ) = cf+(x, ξ ) + cf +(x, ξ )

for x > . From (.) and (.)

f+(x, ξ ) = eiξx +O
(
C(x)ρ(x)
 + |ξ |

)
,

f +(x, ξ ) = e–iξx +O
(
C(x)ρ(x)
 + |ξ |

)
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for |ξ | + x large, ξ ∈R, x > . Hence

F(x, ξ ) /∈ L(,∞)

if |c| + |c| 	=  and L has no λ positive eigenvalues.
From the definition of f+(x, ), we have that f+(x, )→  as x → ∞, so f+(x, ) /∈ L(,∞).

Observe that

g(x) := f+(x, )
∫ x

c

dτ

(f+(τ , ))

is a solution of (.) which is asymptotic to x for x → ∞, [, p.], and therefore linearly
independent of f+(x, ). But af+(x, ) + bg(x) is asymptotic to a + bx as x → ∞, and thus
not in L(,∞) unless |a| + |b| = . Hence ξ  =  is not an eigenvalue of L. �

We now study the continuous spectrum.

Theorem . The continuous spectrum of T (and thus of L) is [,∞).

Proof From [, p.] or [, p.], as T is self-adjoint, the spectrum of T , σ (T), is com-
prised of continuous and point spectrum only, i.e., T has no residual spectrum. In addi-
tion, the continuous spectrum of T is real. By [] the essential spectrum of the minimal
operator generated by T is [,∞) and this is the same as the essential spectrum of T , see
[]. Thus, as T has no residual spectrum, we have that the continuous spectrum of T is
[,∞). �

4 Jost solutions with a transfer condition
Wenow consider the Jost solutions to problem (.). Since this problem can be considered
as two half-line problems, solutions to (.) can be given in terms of the classical Jost
solutions f+(x, ζ ) and f–(x, ζ ), i.e., whenM = I .
The solutions f+,M(x, ζ ) and f–,M(x, ζ ), as per Definition ., can be expressed as

f+,M(x, ζ ) :=

{
f+(x, ζ ), x > ,
h(x, ζ ), x < ,

(.)

f–,M(x, ζ ) :=

{
f–(x, ζ ), x < ,
h(x, ζ ), x > ,

(.)

where h(x, ζ ) is a solution of (.) on (–∞, ) obeying the condition

(
h(–, ζ )
h′
(–, ζ )

)
=M–

(
f+(+, ζ )
f ′
+(+, ζ )

)
,

and h(x, ζ ) is a solution of (.) on (,∞) obeying the condition

(
h(+, ζ )
h′
(+, ζ )

)
=M

(
f–(–, ζ )
f ′
–(–, ζ )

)
.

http://www.boundaryvalueproblems.com/content/2013/1/255
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Here, it should be noted that the existence of an extension of f+ from (,∞) to the solu-
tion f+,M on R \ {} relies onM being non-singular.
As in the classical case, for ζ = ξ ∈ R, we may find the conjugate Jost solution. In this

case, for f +,M(x, ξ ), we have

f +,M(x, ξ ) =

{
f +(x, ξ ) = f+(x, –ξ ), x > ,
h(x, ξ ) = h(x, –ξ ), x < ,

(.)

where the transfer condition holds at x = .
Since f+,M(x, ξ ) and f +,M(x, ξ ) are equal to f+(x, ξ ) and f +(x, ξ ) on (,∞), we see that f+,M

and f +,M are linearly independent on (,∞) for all ξ ∈ R \ {}. Therefore h can be ex-
pressed as a linear combination of f+,M and f +,M on (,∞) with coefficients A(ξ ) and B(ξ )
giving that on (,∞)

f–,M(x, ξ ) = A(ξ )f +,M(x, ξ ) + B(ξ )f+,M(x, ξ ). (.)

Note that (.) also holds on (–∞, ) as detM = .
For �(ζ ) ≥ , ζ 	= , we extend A(ξ ) to C

+ by

A(ζ ) =
–
iζ

W
[
f+,M(x, ζ ), f–,M(x, ζ )

]
, (.)

and for ξ ∈R \ {},

B(ξ ) =

iξ

W
[
f+,M(x, –ξ ), f–,M(x, ξ )

]
. (.)

Theorem . For ξ ∈R \ {}, A(ξ ) and B(ξ ) satisfy the following equality:

∣∣A(ξ )∣∣ – ∣∣B(ξ )∣∣ = .

Proof We begin by obtaining an expression for the solution f+,M(x, ξ ) in terms of the con-
jugate solutions f–,M(x, ξ ) and f –,M(x, ξ ) for ξ ∈ R \ {}. In a similar manner to the classical
case, we obtain

det

[
f –,M f–,M
f ′
–,M f ′

–,M

]
=W [f –,M, f–,M] = –iξ .

Thus, f –,M(x, ξ ) and f–,M(x, ξ ) are linearly independent for ξ ∈R \ {} and consequently,

f+,M(x, ξ ) =G(ξ )f –,M(x, ξ ) +G(ξ )f–,M(x, ξ ), (.)

whereG(ξ ),G(ξ ) are independent of x. Equation (.) and its x-derivative give thematrix
equation

[
f+,M
f ′
+,M

]
=

[
f –,M f–,M
f ′
–,M f ′

–,M

][
G

G

]
,

http://www.boundaryvalueproblems.com/content/2013/1/255
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which has a solution
[
G

G

]
=

[
f –,M f–,M
f ′
–,M f ′

–,M

]– [
f+,M
f ′
+,M

]

=
i
ξ

[
f ′
–,M –f–,M

–f ′
–,M f –,M

][
f+,M
f ′
+,M

]
.

Thus, from (.),

G(ξ ) =
i
ξ

(
f+,Mf ′

–,M – f–,Mf ′
+,M

)

=
i
ξ

W [f+,M, f–,M]

= A(ξ ),

and, by (.),

G(ξ ) =
i
ξ

(
f –,Mf

′
+,M – f ′

–,Mf+,M
)

=
i
ξ

W [f –,M, f+,M]

= –B(ξ ).

Combining the expressions for G(ξ ) and G(ξ ) with (.) gives

f+,M(x, ξ ) = A(ξ )f –,M(x, ξ ) – B(ξ )f–,M(x, ξ ). (.)

Substituting (.) into (.) gives

f–,M(x, ξ ) = A(ξ )f +,M(x, ξ ) + B(ξ )f+,M(x, ξ )

= A(ξ )
[
A(ξ )f–,M(x, ξ ) – B(ξ )f –,M(x, ξ )

]
+ B(ξ )

[
A(ξ )f –,M(x, ξ ) – B(ξ )f–,M(x, ξ )

]
=

(∣∣A(ξ )∣∣ – ∣∣B(ξ )∣∣)f–,M(x, ξ ).
Now, since f–,M(x, ξ ) 	≡  for ξ ∈R \ {}, x ∈R,

∣∣A(ξ )∣∣ – ∣∣B(ξ )∣∣ = . �

The reflection coefficient can be defined for this case as

R(ξ ) =
B(ξ )
A(ξ )

, ξ ∈R. (.)

By Theorem ., all eigenvalues, ζ , for the scattering problem (.)-(.) on the line are
negative. So, for each eigenvalue, ζ is of the form

ζ = iη for some η ∈R
+.

http://www.boundaryvalueproblems.com/content/2013/1/255
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Let ζ = iη, η ∈ R
+. Then, for large x > , f+,M(x, iη) = f+(x, iη) = e–ηx( + o()) by (.). So

there exists a such that |f+(x, iη)| >  for all x≥ a. Direct computation gives that

y(x) =
∫ x

a

f+(x)
f + (t)

dt =
eηx

η
(
 + o()

)

is a solution of differential equation (.) on [a,∞) which in not in L[a,∞). Elementary
existence theory for differential equations gives that y can be extended to a solution of dif-
ferential equation (.) with transfer condition (.) on (–∞, )∪ (,∞). Since the transfer
matrix M is invertible and (.) is second-order, the solution space to (.) with transfer
condition (.) on (–∞, )∪ (,∞) is -dimensional. Combining these facts gives that the
geometric multiplicity of an eigenvalue is . Thus, if ζ  is an eigenvalue, then for some
k ∈ C \ {}, f–,M(x, ζ ) = kf+,M(x, ζ ) for all x ∈ R

+. Consequently, ζ  is an eigenvalue if and
only ifW [f–,M, f+,M](x, ζ ) = , i.e., from (.), A(ζ ) = . Hence, for ζ = iη, η ∈R

+ with ζ  an
eigenvalue of (.)-(.), we have

A(iη) = . (.)

Conversely, if A(ζ ) = , then f–,M(x, ζ ) and f+,M(x, ζ ) are linearly dependent making
f+,M, f–,M ∈ L(–∞,∞). Thus ζ  is an eigenvalue and ζ = iη for some η ∈R

+.

Theorem . The function A(ζ ) has a finite set of zeros.

Proof We know, from the above reasoning, that if A(ζ ) =  then ζ = iη for some η ∈ R
+.

It should be noted that A(ζ ) is analytic on the upper half-plane and continuous there and
up to the boundary.
We now compute the asymptotic form of A(ζ ). For |ζ | large in the upper half-plane,

taking x → + in (.), we obtain

A(ζ ) =
–
iζ

det

[
f+,M(+, ζ ) f–,M(+, ζ )
f ′
+,M(+, ζ ) f ′

–,M(+, ζ )

]

=
–
iζ

det

[
f+,M(+, ζ )
f ′
+,M(+, ζ )

M

(
f–,M(–, ζ )
f ′
–,M(–, ζ )

)]

=
–
iζ

det

[
f+(, ζ ) mf–(, ζ ) +mf ′

–(, ζ )
f ′
+(, ζ ) mf–(, ζ ) +mf ′

–(, ζ )

]

=
–
iζ

{
f+(, ζ )

[
mf–(, ζ ) +mf ′

–(, ζ )
]
– f ′

+(, ζ )
[
mf–(, ζ ) +mf ′

–(, ζ )
]}
.

Substituting into the above the asymptotic approximations to the Jost solutions for large
values of |ζ |, we get, for �(ζ ) ≥ ,

A(ζ ) =
m

i
ζ +

m +m


+
m



∫ ∞

–∞
cos(–ζ τ )q(τ )eiζ |τ | dτ +O

(


 + |ζ |
)
. (.)

Here, we observe that | cos(–ζ τ )eiζ |τ || ≤  and q ∈ L(R), thus the integral term in (.)
is uniformly bounded in the upper half-plane. In addition, as detM =  andM has real en-
tries, not both ofm andm +m can simultaneously be zero. Hence |A(ζ )| is bounded

http://www.boundaryvalueproblems.com/content/2013/1/255
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away from zero for large ζ in the upper half-plane giving that A(ζ ) does not have an un-
bounded sequence of zeros.
Using the same approach as in [], by Lemma ., 

|A(ζ )| is bounded in a neighbourhood
of the real axis, so the zeros of A(ζ ) have no finite accumulation point and are thus a finite
set. �

From Theorem . and the reasoning preceding Theorem ., we obtain the following
corollary.

Corollary . The scattering problem with a transfer condition has a finite number of
eigenvalues, all of which are simple.

We note for reference the following properties of B(ξ ).
From (.), we have

B(ξ ) =

iξ

W
[
f +,M(x, ξ )f–,M(x, ξ )

]
, ξ ∈ R \ {}.

Taking x→ +, we obtain

B(ξ ) =
–
iξ

det

[
f +,M(+, ξ ) f–,M(+, ξ )
f ′
+,M(+, ξ ) f ′

–,M(+, ξ )

]

=
–
iξ

det

[
f +(, ξ )
f ′
+(, ξ )

M

(
f–(, ξ )
f ′
–(, ξ )

)]
.

For |ξ | large, we get

B(ξ ) = –
m

i
ξ +

m –m


–
m



∫ ∞

–∞
cos(ξτ )q(τ )e–iξτ dτ +O

(


 + |ξ |
)
. (.)

5 Norming constants and the zeros of A(ζ )
Denote the eigenvalues ζ , where ζ = iη, η ∈ (,∞), by  < η < η < · · · < ηN . We define
the norming constants ck by


ck

=
∫ ∞

–∞

∣∣f+,M(x, iηk)∣∣ dx =
∫ 

–∞

∣∣h(x, iηk)∣∣ dx +
∫ ∞



∣∣f+(x, iηk)∣∣ dx. (.)

Theorem . The zeros of A(ζ ) are simple. In addition, if ζ  = –η
k is an eigenvalue of the

scattering problem with a transfer condition, then

dA(ζ )
dζ

∣∣∣∣
ζ=iηk

= i
dk
ck

,

where f–,M(x, iηk) = dkf+,M(x, iηk) for all x ∈R \ {} and dk 	= .

Proof Differentiating (.), we get

dA
dζ

= –

ζ
A(ζ ) +

i
ζ

W
[
∂f+,M
∂ζ

, f–,M
]
+

i
ζ

W
[
f+,M,

∂f–,M
∂ζ

]
,
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where the right-hand side is independent of x. So,

dA
dζ

(iηk) =


ηk
W

[
∂f+,M
∂ζ

, f–,M
]
(x, iηk) +


ηk

W
[
f+,M,

∂f–,M
∂ζ

]
(x, iηk).

The functions f+,M and f–,M obey –f ′′ + qf = ζ f so, differentiating this equation with re-
spect to ζ , gives

–
∂f ′′

+,M

∂ζ
+ q(x)

∂f+,M
∂ζ

= ζ f+,M + ζ  ∂f+,M
∂ζ

and similarly for f–,M . Thus

d
dx

W
[
∂f+,M
∂ζ

, f–,M
]
= ζ f+,Mf–,M, x 	=  (.)

and

d
dx

W
[
f+,M,

∂f–,M
∂ζ

]
= –ζ f+,Mf–,M, x 	= . (.)

Let y > x > , integrating (.) over the interval [x, y] gives

W
[
∂f+,M
∂ζ

, f–,M
]
(y) –W

[
∂f+,M
∂ζ

, f–,M
]
(x) = ζ

∫ y

x
f+,Mf–,M dx, (.)

where we should keep in mind that f–,M = h on the positive semi-axis, see (.). Similarly
for –y < x < , integrating (.) over the interval [–y,x], we get

W
[
f+,M,

∂f–,M
∂ζ

]
(x) –W

[
f+,M,

∂f–,M
∂ζ

]
(–y) = –ζ

∫ x

–y
f+,Mf–,M dx. (.)

Let � be a square (with side length equal to ε) contour oriented anticlockwise around
iηk (see Figure ), where ε >  is sufficiently small that ηk > ε and ε < ηi+ – ηi for all i =
, . . . ,N – .
By Cauchy’s integral representation for analytic functions and their derivatives, we have

∂f+,M
∂ζ

(x, iηk) =


π i

∫
�

f+,M(x, z)
(z – iηk)

dz.

Since 
|z–iηk | ≤ 

ε
, for z ∈ �, we have

∣∣∣∣∂f+,M∂ζ
(x, iηk)

∣∣∣∣ ≤ 
π


ε

εmax
z∈�

∣∣f+,M(x, z)
∣∣ ≤ 

πε
max
z∈�

∣∣f+,M(x, z)
∣∣.

Figure 1 The square contour with centre iηk .
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From (.), for x > , we obtain

∣∣∣∣∂f+,M∂ζ
(x, iηk)

∣∣∣∣ ≤ 
πε

max
z∈�

(
e–�(z)x +

∣∣∣∣C(x)ρ(x)e–�(z)x

 + |z|
∣∣∣∣
)
,

which is bounded on each interval of the form [y,∞). Similarly, as f+,M(x, ζ ) is analytic in
the upper half-plane and twice differentiable with respect to x on R, we have

d
dx

∂f+,M
∂ζ

(x, iηk) =
∂f ′

+,M

∂ζ
(x, iηk).

Proceeding as above, we obtain

∣∣∣∣∂f ′
+,M

∂ζ
(x, iηk)

∣∣∣∣ ≤ 
πε

max
z∈�

∣∣f ′
+,M(x, z)

∣∣,
which by (.) is bounded on each interval of the form [y,∞). In exactly the same way,
it can be shown that ∂f–,M

∂ζ
(x, iηk) and

∂f ′–,M
∂ζ

(x, iηk) are bounded functions on each inter-
val of the form (–∞, –y]. Now, for ζ  an eigenvalue, we have, by the reasoning prior to
Lemma ., that ζ = iηk for ηk ∈R

+ and f–,M(x, iηk) = dkf+,M(x, iηk) for some dk ∈C \ {}.
Thus

W
[
∂f+,M
∂ζ

, f–,M
]
(–y, iηk) =W

[

dk

∂f–,M
∂ζ

, f–,M
]
(–y, iηk) → 

and

W
[
∂f+,M
∂ζ

, f–,M
]
(y, iηk) =W

[
∂f+,M
∂ζ

,dkf+,M
]
(y, iηk) → 

as y→ ∞. Letting y→ ∞ in (.) and (.), from the above equations, we get

W
[
f+,M,

∂f–,M
∂ζ

]
(x, iηk) = –iηk

∫ ∞

x
f+,Mf–,M|ζ=iηk dx, x > 

and

W
[
∂f+,M
∂ζ

, f–,M
]
(x, iηk) = –iηk

∫ x

–∞
f+,Mf–,M|ζ=iηk dx, x < .

Hence

dA
dζ

(iηk) =


ηk
(–iηk)

(∫ ∞

x
f+,Mf–,M|ζ=iηk dx +

∫ x

–∞
f+,Mf–,M|ζ=iηk dx

)

for each x > . So, letting x → +, we obtain

dA
dζ

(iηk) = –i
(∫ 

–∞
f+,Mf–,M|ζ=iηk dx +

∫ –∞


f+,Mf–,M|ζ=iηk dx

)

= –idk
(∫ ∞

–∞
f +,M|ζ=iηk dx

)
= –i

dk
ck

	= 

by (.), and the zeros of A(ζ ) are simple. �
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Note that the theorem given above is especially useful when solving the associated (ma-
trix) inverse scattering problem using the approach given in [] say, since it provides an
explicit relationship between the norming constants ck and the constants dk in terms of
the derivative of A(ζ ).
The inverse scattering problem, building on the results obtained here, will be considered

in the sequel to this paper.
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