Transfer reactions to populate the pygmy dipole resonance in 96Mo
Date
2023
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
University of the Witwatersrand, Johannesburg
Abstract
The presence of a low-lying dipole strength in neutron-rich nuclei has been established and its location in the vicinity of the neutron threshold (Sn) has implications in nucleosynthesis and specifically in neutron-capture reaction rate calculations. Additionally, a correlation of this low-lying dipole strength with neutron-skin thickness has been discussed. Since its observation, there has been a great deal of work in an attempt to understand its nature, both theoretically and experimentally. Some of the characteristics of this low-lying dipole strength include isospin mixing, which allows the use of different experimental probes to study it. In addition, compared to the IVGDR, the degree to which the low-lying dipole states are collective is under scrutiny and remains an open question of interest.
This study was aimed at addressing the question of collectivity of these dipole states and one-nucleon transfer reactions were the chosen probes as they have been shown to be powerful in probing the single-particle property of nuclei. In particular the (p,d) and (d,p) reactions have been instrumental in such measurements. To allow the investigation from both neutron addition and removal, the 96Mo nucleus is particularly attractive as it can be populated via both mechanisms, with the availability of stable targets as a bonus. In addition, the (d,p) has been successfully used recently used for PDR related measurements on 120Sn and 208Pb with results alluding to a strong single-particle contribution, hence conducting the investigation on 96Mo provides access to a different mass region. 97Mo(p,d)96Mo and
95Mo(d,p)96Mo transfer reactions were performed in normal kinematics using the MAGNEX magnetic spectrometer at INFN-LNS. The 25 MeV/u proton beam and 5 MeV/u deuteron beam from the Tandem accelerator interacted with the 97Mo and 95Mo targets, respectively. The MAGNEX spectrometer was utilised to analyse the scattered particles based on their momentum prior to being detected at the focal-plane. Excitation energy spectra were obtained and angular distributions were computed for the bound states and the higher excitation energy region of interest (above Ex = 4 MeV). These were fitted, using the MDA with DWBA calculations considering different single-particle configurations from a simplistic shell model. Comparing spectra from the two reactions, same excitation energy
regions were populated. The results from the MDA of the (p,d) data, show a strong single-particle component in the Ex region that was analysed, with one particular configuration that excites 1− states dominating. The QPM was used for the theoretical interpretation and below 6 MeV, the configuration ((2d5 2 )+1 N(1g9
2 )−1) that populates 2+ states dominates but in the experimental data, this configuration was found to be suppressed as the momentum matching conditions were optimized for l=1 momentum transfer. When considering the QPM predictions involving only the sp configurations of momentum transfer of l=1, 2 and 3, an agreement with the data was found. Extraction of reliable angular distributions from the (d,p) was not possible thus future (d,pγ) experiments are envisaged
Description
A research report submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy to the Faculty of Science, School of Physics, University of the Witwatersrand, Johannesburg, 2023
Keywords
Neutron threshold, IVGDR, Collectivity, Transfer reactions, Pygmy Dipole, UCTD
Citation
Khumalo, Thuthukile Charmane. (2023). The role of design houses [PhD thesis, University of the Witwatersrand, Johannesburg]. WireDSpace.https://hdl.handle.net/10539/42167