Performance of four computer-coded verbal autopsy methods for cause of death assignment compared with physician coding on 24,000 deaths in low- and middle-income countries

dc.contributor.authorNikita Desai
dc.contributor.authorLukasz Aleksandrowicz
dc.contributor.authorPierre Miasnikof
dc.contributor.authorYing Lu
dc.contributor.authorJordana Leitao
dc.contributor.authorPeter Byass
dc.contributor.authorStephen Tollman
dc.contributor.authorPaul Mee
dc.contributor.authorDewan Alam
dc.contributor.authorSuresh Kumar Rathi
dc.contributor.authorAbhishek Singh
dc.contributor.authorRajesh Kumar
dc.contributor.authorFaujdar Ram
dc.contributor.authorPrabhat Jha
dc.date.accessioned2024-04-02T10:42:08Z
dc.date.available2024-04-02T10:42:08Z
dc.date.issued2014
dc.description.abstractBackground: Physician-coded verbal autopsy (PCVA) is the most widely used method to determine causes of death (CODs) in countries where medical certification of death is uncommon. Computer-coded verbal autopsy (CCVA) methods have been proposed as a faster and cheaper alternative to PCVA, though they have not been widely compared to PCVA or to each other. Methods: We compared the performance of open-source random forest, open-source tariff method, InterVA-4, and the King-Lu method to PCVA on five datasets comprising over 24,000 verbal autopsies from low- and middle-income countries. Metrics to assess performance were positive predictive value and partial chance-corrected concordance at the individual level, and cause-specific mortality fraction accuracy and cause-specific mortality fraction error at the population level. Results: The positive predictive value for the most probable COD predicted by the four CCVA methods averaged about 43% to 44% across the datasets. The average positive predictive value improved for the top three most probable CODs, with greater improvements for open-source random forest (69%) and open-source tariff method (68%) than for InterVA-4 (62%). The average partial chance-corrected concordance for the most probable COD predicted by the open-source random forest, open-source tariff method and InterVA-4 were 41%, 40% and 41%, respectively, with better results for the top three most probable CODs. Performance generally improved with larger datasets. At the population level, the King-Lu method had the highest average cause-specific mortality fraction accuracy across all five datasets (91%), followed by InterVA-4 (72% across three datasets), open-source random forest (71%) and open-source tariff method (54%). Conclusions: On an individual level, no single method was able to replicate the physician assignment of COD more than about half the time. At the population level, the King-Lu method was the best method to estimate cause-specific mortality fractions, though it does not assign individual CODs. Future testing should focus on combining different computer-coded verbal autopsy tools, paired with PCVA strengths. This includes using open-source tools applied to larger and varied datasets (especially those including a random sample of deaths drawn from the population), so as to establish the performance for age- and sex-specific CODs
dc.description.librarianPM2023
dc.facultyFaculty of Health Sciences
dc.identifier.urihttps://hdl.handle.net/10539/38288
dc.language.isoen
dc.schoolPublic Health
dc.subjectCauses of death, Computer-coded verbal autopsy (CCVA), InterVA-4, King-Lu, Physician-certified verbal autopsy (PCVA), Random forest, Tariff method, Validation, Verbal autopsy
dc.titlePerformance of four computer-coded verbal autopsy methods for cause of death assignment compared with physician coding on 24,000 deaths in low- and middle-income countries
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Comparisonofmanvsmachineon24K-SureshRathi.pdf
Size:
803.82 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.43 KB
Format:
Item-specific license agreed upon to submission
Description: