A Comparative Performance Analysis of Popular Deep Learning Models and Segment Anything Model SAM for River Water Segmentation in CloseRange Remote Sensing Imagery
dc.article.end-page | 52085 | en |
dc.article.start-page | 52067 | en |
dc.citation.doi | 10.1109/ACCESS.2024.3385425 | en |
dc.contributor.author | Armin Moghimi | en |
dc.contributor.author | Mario Welzel | en |
dc.contributor.author | Turgay Celik | en |
dc.contributor.author | Torsten Schlurmann | en |
dc.date.accessioned | 2024-11-25T12:03:56Z | |
dc.date.available | 2024-11-25T12:03:56Z | |
dc.faculty | FACULTY OF ENGINEERING & THE BUILT ENVIRONMENT | en |
dc.identifier.citation | WOS | en |
dc.identifier.issn | 2169-3536 | en |
dc.identifier.uri | https://hdl.handle.net/10539/42881 | |
dc.journal.title | A Comparative Performance Analysis of Popular Deep Learning Models and Segment Anything Model SAM for River Water Segmentation in CloseRange Remote Sensing Imagery | en |
dc.journal.volume | 12 | en |
dc.title | A Comparative Performance Analysis of Popular Deep Learning Models and Segment Anything Model SAM for River Water Segmentation in CloseRange Remote Sensing Imagery | en |
dc.type | Journal Article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Journal Article.pdf
- Size:
- 6.96 MB
- Format:
- Adobe Portable Document Format
- Description:
- Bitstream uploaded by REST Client