Geochemical and isotopic studies of the Platreef with special emphasis on sulphide mineralisation

No Thumbnail Available

Date

2008-12-05T09:43:42Z

Authors

Sharman-Harris, Elizabeth

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The Platreef has been the site of platinum mining since the 1920’s. The reef itself comprises a series of pyroxenites, gabbronorites and norites that contain xenoliths/rafts of footwall rocks. The Platreef is irregularly mineralised with PGE, Cu and Ni, and has a greater abundance of sulphides than the Merensky Reef. The main base metal sulphides within the Platreef are pyrrhotite, pyrite, pentlandite, and chalcopyrite. Extremely varied platinum group minerals occur as tellurides, bismuthotellurides, antimonides and arsenides. This study aimed to gain a clearer understanding of the formation of sulphides within the Platreef. In order to do this, cores from both the northern and southern sectors of the Platreef were sampled. A detailed study of the sulphides within these cores was conducted to identify different styles of mineralisation and their occurrences. Four different styles of mineralisation were identified: massive, net-textured, blebby and interstitial. In general, sulphides in the southern sector of the Platreef are concentrated in the lower portion of the package, whereas in the northern sector they are concentrated in the upper part although in both sectors the sulphide occurrences are associated with metasedimentary xenoliths. Conventional and multiple sulphur isotope analyses were undertaken on sulphides from cores from both the southern and the northern sectors. This was done in order to determine the source of the sulphur. These analyses were also conducted to examine sulphur isotope variations with changing footwall. Previous sulphur isotope data predominantly obtained from the central sector of the Platreef indicated a crustal contribution to the sulphur budget but did not provide much data on footwall sulphides so the nature of the crustal component was only implied. In this thesis sulphur from an external source was identified as having contributed to the formation of sulphides in both the southern and the northern sectors of the Platreef, especially for sulphides in proximity to metasedimentary xenoliths. In the southern sector of the Platreef this source was identified as most likely being pyritic shales of the Lower Duitschland Formation. In the northern sector, Malmani dolomites, which are suggested to have collapsed from the roof of the Platreef, are the most likely source of sulphur. Importantly, in the northern sector no sulphur is thought to have come from the Archaean granite footwall. Oxygen isotope analyses were conducted on samples from the southern sector of the Platreef to verify the presence of crustal contamination. Data collected indicated that there had been a crustal oxygen component involved in the formation of silicates that led to their partial recrystallisation. When compared to oxygen isotope data from the central sector of the Platreef it appears that there are variations along strike that most likely result due to the changing footwall. This data indicates a major contribution of oxygen-, sulphur- and other volatile-rich fluids to the Platreef. This led to the partial re-crystallisation of silicates, and in areas in close proximity to sulphur-bearing metasedimentary xenoliths aided in the formation of sulphides. These volatile-rich fluids most likely originated from metasedimentary xenoliths during metamorphism that then migrated through the Platreef package. When the observations from both the southern and northern sectors of the Platreef are compared and combined with pre-existing data for the central sector, several general observations can be made. 1. The entire length of the Platreef has been affected by contamination from crustal sulphur sources to some degree. This contamination is suggested to be from volatile-rich fluids which were released from metasedimentary crustal xenoliths and footwall during metamorphism. 2. The proximity between sulphide enrichment and sulphur-bearing sediments (as footwall or xenoliths) is important and indicates the source of the sulphur which led to sulphide formation. 3. Contamination occurred on a localised scale, depending on the composition of the sedimentary lithologies and the proximity of the contaminant to the magma. In the southern sector of the Platreef the source of the sulphur is almost certainly pyritic shales of the Lower Duitschland Formation. In the central sector, sulphur has most likely come from sulphur-rich dolomites and evaporites from the Malmani dolomites. In the northern sector, sulphur-rich fluids were released from Malmani dolomite rafts that collapsed from the roof into the magma during the emplacement of the Platreef. The Archaean footwall in this area has had little or no control on the formation of the sulphides within the Platreef.

Description

Keywords

Platreef, sulphur isotopes, Bushveld complex, sulphides

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By