Aerodynamic Force Variation on a Trailing MotoGP Motorcycle in a Corner

dc.contributor.authorShaw, Craig Byrne
dc.contributor.supervisorBoer, Michael
dc.date.accessioned2025-07-15T09:19:41Z
dc.date.issued2024
dc.descriptionA research report submitted in fulfillment of the requirements for the Master of Science in Mechanical Engineering, In the Faculty of Engineering and the Built Environment , School of Mechanical, Industrial and Aeronautical Engineering, University of the Witwatersrand, Johannesburg, 2024
dc.description.abstractMotorcycle racing is a popular form of motor racing. The MotoGP category produces exciting and competitive races due to motorcycles following each other so closely. This has led to significant aerodynamic advancements being made in the MotoGP category over the past decade. Motorcycles and riders often race within the wake of a leading motorcycle as a result of this competitive racing. Racing in the wake provides an advantage on a straight due to the reduced drag force. This allows for greater acceleration and an opportunity to overtake the leading motorcycle. The effect of the wake on a trailing motorcycle in a corner has not been explored in depth. This research was focused on the aerodynamic force variation on a trailing motorcycle in the wake of leading motorcycle. The optimal position for the trailing motorcycle to gain an advantage over the leading motorcycle was determined subsequently. This was achieved using Computational Fluid Dynamics (CFD). The geometry of the motorcycle was obtained using 3D scans of a 1/18th scale model 2018 Repsol Honda RC213V. The geometry of the rider was drawn using CAD. Initial CFD models were created simulating the motorcycle and rider in a straight line to compare to existing published data for validation. The CFD cornering methodology was developed by Queens University in association with Siemens. The method makes use of rotating reference frames. This simulates the motorcycle and rider cornering at a constant velocity around a constant radius corner. Models were created for a singular motorcycle and rider at varying lean angles between 40 and 60 degrees with matched velocities and corner radii. The aerodynamic forces of drag, lift and side force were analysed on the motorcycle and rider for each case. The trends for these forces were determined relative to the changing lean angles. The drag on the motorcycle and rider increased non-linearly as the lean angle increased with the side force following a similar trend. The lift on the motorcycle and rider also increased non-linearly as the lean angle increased. These same CFD models were recreated with a second motorcycle and rider following a leading motorcycle to determine the effect the wake had on the aerodynamic forces. The second motorcycle and rider were positioned 1 characteristic length behind the leading pair on the same racing line. The drag on the trailing motorcycle and rider decreased as the lean angle increased. The lift on the trailing motorcycle and rider followed a similar trend to the leading pair with it increasing as the lean angle increased and the side force fluctuates as the lean angle increased. This resulted in the trailing motorcycle having a negative allowable change in forward acceleration relative to the leading motorcycle at lean angles lower than 60 degrees. The optimal position for a trailing motorcycle in a corner was determined by positioning the motorcycle and rider on various racing lines and following distances behind the leading motorcycle and rider. This created a grid pattern of the tested trailing positions. Two smaller racing line radii, three larger racing line radii and three different following distances were tested. The optimal trailing position at a 50 degree lean angle was found to be 1 characteristic length behind and on a racing line 1 characteristic width larger than the leading motorcycle. This position resulted in a positive allowable change in forward acceleration relative to the leading motorcycle around a corner radius of 125.86 m at 38.36 m/s. This iii position was tested around another two corner radii of 75 m and 150 m. This resulted in a negative allowable change in forward acceleration of around the 75 m radius corner and a greatly improved positive change in forward acceleration around the 150 m radius corner. From these results it was concluded that this optimal position is only viable around larger radius corners. It was approximated that this optimal position provides the trailing motorcycle an advantage around corner with radii larger than 86.8 m.
dc.description.submitterMM2025
dc.facultyFaculty of Engineering and the Built Environment
dc.identifier0009-0001-4997-6106
dc.identifier.citationShaw, Craig Byrne . (2024). Aerodynamic Force Variation on a Trailing MotoGP Motorcycle in a Corner [Masters dissertation, University of the Witwatersrand, Johannesburg]. WIReDSpace. https://hdl.handle.net/10539/45451
dc.identifier.urihttps://hdl.handle.net/10539/45451
dc.language.isoen
dc.publisherUniversity of the Witwatersrand, Johannesburg
dc.rights© 2024 University of the Witwatersrand, Johannesburg. All rights reserved. The copyright in this work vests in the University of the Witwatersrand, Johannesburg. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of University of the Witwatersrand, Johannesburg.
dc.rights.holderUniversity of the Witwatersrand, Johannesburg
dc.schoolSchool of Mechanical, Industrial and Aeronautical Engineering
dc.subjectUCTD
dc.subjectMotorcyle Cornering
dc.subjectCFD
dc.subject.primarysdgSDG-7: Affordable and clean energy
dc.titleAerodynamic Force Variation on a Trailing MotoGP Motorcycle in a Corner
dc.typeDissertation

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
e Gouveia_Prediction_2024.pdf
Size:
13.42 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.43 KB
Format:
Item-specific license agreed upon to submission
Description: