Inequalities of harmonic univalent functions with connections of hypergeometric functions

dc.contributor.authorSokol, Janusz
dc.contributor.authorIbrahim, Rabha W.
dc.contributor.authorAhmad, M. Z
dc.contributor.authorAl-Janaby, Hiba F.
dc.date.accessioned2016-10-03T08:27:01Z
dc.date.available2016-10-03T08:27:01Z
dc.date.issued2015
dc.description.abstractLet SH be the class of functions f = h + (g) over bar that are harmonic univalent and sense-preserving in the open unit disk U = {z : vertical bar z vertical bar < 1} for which f(0) = f'(0) - 1 = 0. In this paper, we introduce and study a subclass H(alpha, beta)of the class SH and the subclass NH(alpha, beta) with negative coefficients. We obtain basic results involving sufficient coefficient conditions for a function in the subclass H(alpha, beta) and we show that these conditions are also necessary for negative coefficients, distortion bounds, extreme points, convolution and convex combinations. In this paper an attempt has also been made to discuss some results that uncover some of the connections of hypergeometric functions with a subclass of harmonic univalent functions.en_ZA
dc.identifier.citationSokol, Janusz et al. 2015. Inequalities of harmonic univalent functions with connections of hypergeometric functions. OPEN MATHEMATICS 13, pp. 691-705.en_ZA
dc.identifier.issn2391-5455
dc.identifier.urihttp://hdl.handle.net/10539/21105
dc.language.isoenen_ZA
dc.publisherDE GRUYTER OPEN LTD, BOGUMILA ZUGA 32A ST, 01-811 WARSAW, POLANDen_ZA
dc.relation.ispartofseriesVol. 13;
dc.subjectHarmonic functionen_ZA
dc.subjectAnalytic functionen_ZA
dc.subjectUnivalent functionen_ZA
dc.subjectUnit disken_ZA
dc.subjectCONVOLUTIONen_ZA
dc.subjectCONVEXITYen_ZA
dc.subjectMAPPINGSen_ZA
dc.titleInequalities of harmonic univalent functions with connections of hypergeometric functionsen_ZA
dc.typeArticleen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
[Open Mathematics] Inequalities of harmonic univalent%0Afunctions with connections%0Aof hypergeometric functions.pdf
Size:
284.09 KB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: