Dear Users, System will be interrupted for the whole day on the 29 January 2025 for the software upgrade, apologies for any inconvenience this might cause. Regards, WIReDSpace Admin

The Genus of a Nilpotent R-Powered Group

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

In [14], Mislin define the genus G(N) of a finitely generated nilpotent group N to be the set of isomorphism classes of finitely generated nilpotent groups M such that the localizations Mp and Np are isomorphic at every prime p. In [6], Hilton and Mislin define an abelian group structure on the genus set G(N) of a finitely generated nilpotent group N with finite commutator subgroups. Let χ0 be the class of finitely generated groups with finite commutator subgroup. For a χ0-group G, the non cancellation set of G, denoted by χ(G), is the set of isomorphism classes of groups H such that G×Z ∼= H ×Z. Warfield, in [19], proved that, if N is a nilpotent χo-group, then G(N) = χ(N). In [20], the author showed that, for a χo-group G the non- cancellation set χ(G) has a group structure similar to the group structure on the Mislin genus of a nilpotent χo-group. Let R be a binomial ring. The nilpotent R-powered group, first introduced by P. Hall in [5], is a nilpotent group G extended by a binomial ring R. Many results that are found in the theory of nilpotent groups carry over to the class of nilpotent R-powered groups. In particular, Majewicz and Zyman in [13], showed that the P-localization of a nilpotent R-powered group G, for a set of primes P in R can be obtained. We study the genus of a finitely R-generated nilpotent R-powered group. We show that the for any two finitely R-generated nilpotent R-powered groups G and H and some finitely R-powered abelian group A, if G(G × A) = G(H × A) then we have G(G) = G(H)

Description

A dissertation submitted in fulfilment of the requirements for the degree of Master of Science to the Faculty of Science, University of the Witwatersrand, Johannesburg, 2022

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By