Production of free surface water jets using focused underwater shock waves

Karnovsky, Hilton
Journal Title
Journal ISSN
Volume Title
It is possible to produce concentrated free surface water jets by rapidly accelerating a geometrically shaped curved deflector plate below the free water surface. This principle has been established using a self focusing electromagnetic acoustic source (FEMAS) and this report verifies it using a shock tube based mechanical analogue of that system. The shape, form and speed o f the water jets produced vary between the two systems. Discrete pressure measurements using a needle hydrophone positioned at different points below the free water surface are presented. The variation in pressure amplitudes recorded highlight the scatter and uncertainty inherent in a complex coupled system, while the form o f the pressure trace is dependant on the mechanical design o f the system in use and the position o f the needle hydrophone in the pressure field. To better understand the experimental system, a computer simulation using commercially availa ble non-linear dynamic analysis software has been developed. This shows that the water surface jets result from the overall hydrodynamic, flow initiated by rapid movement o f the deflector plate below the water surface.