Recent advances in machine learning applications for MXene materials Dedign synthesis characterization and commercialization for energy and environmental applications
dc.article.end-page | 22 | en |
dc.article.start-page | 1 | en |
dc.citation.doi | 10.1016/J.NXMATE.2025.100864 | en |
dc.contributor.author | S.A Kareem | en |
dc.contributor.author | M.A Ibrahim | en |
dc.contributor.author | J.U Anaele | en |
dc.contributor.author | O.F Olanrewaju | en |
dc.contributor.author | E.O Aikulola | en |
dc.contributor.author | Michael Bodunrin | en |
dc.date.accessioned | 2025-07-16T09:10:45Z | |
dc.faculty | FACULTY OF ENGINEERING & THE BUILT ENVIRONMENT | en |
dc.identifier.citation | WOS | en |
dc.identifier.uri | https://hdl.handle.net/10539/45499 | |
dc.journal.title | Recent advances in machine learning applications for MXene materials Dedign synthesis characterization and commercialization for energy and environmental applications | en |
dc.journal.volume | 8 | en |
dc.title | Recent advances in machine learning applications for MXene materials Dedign synthesis characterization and commercialization for energy and environmental applications | en |
dc.type | Journal Article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Journal Article.pdf
- Size:
- 10.56 MB
- Format:
- Adobe Portable Document Format
- Description:
- Bitstream uploaded by REST Client