Lee Berger Collection

Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/20400

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    New fossil remains of Homo naledi from the Lesedi Chamber, South Africa
    (eLife Sciences Publications Ltd, 2017-05) Hawks, J.; Elliott, M.; Schmid, P.; Churchill, S.E.; de Ruiter, D.J.; Roberts, E.M.; Hilbert-Wolf, H.; Garvin, H.M.; Williams, S.A.; Delezene, L.K.; Feuerriegel, E.M.; Randolph-Quinney, P.; Kivell, T.L.; Laird, M.F.; Tawane, G.; DeSilva, J.M.; Bailey, S.E.; Brophy, J.K.; Meyer, M.R.; Skinner, M.M.; Tocheri, M.W.; VanSickle, C.; Walker, C.S.; Campbell, T.L.; Kuhn, B.; Kruger, A.; Tucker, S.; Gurtov, A.; Hlophe, N.; Hunter, R.; Morris, H.; Peixotto, B.; Ramalepa, M.; van Rooyen, D.; Tsikoane, M.; Boshoff, P.; Dirks, P.H.G.M.; Berger, L.R.
    The Rising Star cave system has produced abundant fossil hominin remains within the Dinaledi Chamber, representing a minimum of 15 individuals attributed to Homo naledi. Further exploration led to the discovery of hominin material, now comprising 131 hominin specimens, within a second chamber, the Lesedi Chamber. The Lesedi Chamber is far separated from the Dinaledi Chamber within the Rising Star cave system, and represents a second depositional context for hominin remains. In each of three collection areas within the Lesedi Chamber, diagnostic skeletal material allows a clear attribution to H. naledi. Both adult and immature material is present. The hominin remains represent at least three individuals based upon duplication of elements, but more individuals are likely present based upon the spatial context. The most significant specimen is the near-complete cranium of a large individual, designated LES1, with an endocranial volume of approximately 610 ml and associated postcranial remains. The Lesedi Chamber skeletal sample extends our knowledge of the morphology and variation of H. naledi, and evidence of H. naledi from both recovery localities shows a consistent pattern of differentiation from other hominin species.
  • Thumbnail Image
    Item
    The age of Homo naledi and associated sediments in the Rising Star Cave, South Africa
    (eLife Sciences Publications Ltd, 2017-05) Dirks, P.H.G.M.; Roberts, E.M.; Hilbert-Wolf, H.; Kramers, J.D.; Hawks, J.; Dosseto, A.; Duval, M.; Elliott, M.; Evans, M.; Grün, R.; Hellstrom, J.; Herries, A.I.R.; Joannes-Boyau, R.; Makhubela, T.V.; Placzek, C.J.; Robbins, J.; Spandler, C.; Wiersma, J.; Woodhead, J.; Berger, L.R.
    New ages for flowstone, sediments and fossil bones from the Dinaledi Chamber are presented. We combined optically stimulated luminescence dating of sediments with U-Th and palaeomagnetic analyses of flowstones to establish that all sediments containing Homo naledi fossils can be allocated to a single stratigraphic entity (sub-unit 3b), interpreted to be deposited between 236 ka and 414 ka. This result has been confirmed independently by dating three H. naledi teeth with combined U-series and electron spin resonance (US-ESR) dating. Two dating scenarios for the fossils were tested by varying the assumed levels of 222Rn loss in the encasing sediments: a maximum age scenario provides an average age for the two least altered fossil teeth of 253 +82/–70 ka, whilst a minimum age scenario yields an average age of 200 +70/–61 ka. We consider the maximum age scenario to more closely reflect conditions in the cave, and therefore, the true age of the fossils. By combining the US-ESR maximum age estimate obtained from the teeth, with the U-Th age for the oldest flowstone overlying Homo naledi fossils, we have constrained the depositional age of Homo naledi to a period between 236 ka and 335 ka. These age results demonstrate that a morphologically primitive hominin, Homo naledi, survived into the later parts of the Pleistocene in Africa, and indicate a much younger age for the Homo naledi fossils than have previously been hypothesized based on their morphology.
  • Thumbnail Image
    Item
    Homo naledi and Pleistocene hominin evolution in subequatorial Africa
    (eLife Sciences Publications Ltd, 2017-05) Berger, L.R.; Hawks, J.; Dirks, P.H.G.M.; Elliott, M.; Roberts, E.M.
    New discoveries and dating of fossil remains from the Rising Star cave system, Cradle of Humankind, South Africa, have strong implications for our understanding of Pleistocene human evolution in Africa. Direct dating of Homo naledi fossils from the Dinaledi Chamber (Berger et al., 2015) shows that they were deposited between about 236 ka and 335 ka (Dirks et al., 2017), placing H. naledi in the later Middle Pleistocene. Hawks and colleagues (Hawks et al., 2017) report the discovery of a second chamber within the Rising Star system (Dirks et al., 2015) that contains H. naledi remains. Previously, only large-brained modern humans or their close relatives had been demonstrated to exist at this late time in Africa, but the fossil evidence for any hominins in subequatorial Africa was very sparse. It is now evident that a diversity of hominin lineages existed in this region, with some divergent lineages contributing DNA to living humans and at least H. naledi representing a survivor from the earliest stages of diversification within Homo. The existence of a diverse array of hominins in subequatorial comports with our present knowledge of diversity across other savanna-adapted species, as well as with palaeoclimate and paleoenvironmental data. H. naledi casts the fossil and archaeological records into a new light, as we cannot exclude that this lineage was responsible for the production of Acheulean or Middle Stone Age tool industries.
  • Thumbnail Image
    Item
    Geological and taphonomic context for the new hominin species Homo naledi from the Dinaledi Chamber, South Africa.
    (eLife Sciences Publications Ltd, 2015-09) Dirks, P.H.G.M.; Berger, L.R.; Roberts, E.M.; Peixotto, B.; Tucker, S.; Kramers, J.D.; Hawks, J.; Randolph-Quinney, P.S.; Elliott, M.; Musiba, C.M.; Churchill, S.; de Ruiter, D.J.; Schmid, P.; Backwell, L.R.; Belyanin, G.A.; Boshoff, P.; Hunter, K.L.; Feuerriegel, E.M.; Gurtov, A.; Harrison, J.G.; Hunter, R.; Kruger, A.; Morris, H.; Makhubela, T.V.
    We describe the physical context of the Dinaledi Chamber within the Rising Star cave, South Africa, which contains the fossils of Homo naledi. Approximately 1550 specimens of hominin remains have been recovered from at least 15 individuals, representing a small portion of the total fossil content. Macro-vertebrate fossils are exclusively H. naledi, and occur within clay-rich sediments derived from in situ weathering, and exogenous clay and silt, which entered the chamber through fractures that prevented passage of coarser-grained material. The chamber was always in the dark zone, and not accessible to non-hominins. Bone taphonomy indicates that hominin individuals reached the chamber complete, with disarticulation occurring during/after deposition. Hominins accumulated over time as older laminated mudstone units and sediment along the cave floor were eroded. Preliminary evidence is consistent with deliberate body disposal in a single location, by a hominin species other than Homo sapiens, at an as-yet unknown date.