School of Mining Engineering (ETDs)

Permanent URI for this communityhttps://hdl.handle.net/10539/37974

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    Impact of secondary rock-breaking equipment availability on mining plan in block cave mining
    (University of the Witwatersrand, Johannesburg, 2024) Nyarela, Martin Sphiwe
    Block caving is one of the massive mining methods that has become increasingly popular due to its low operating cost, improved safety, and high production output. The low operational cost is attributable to minimal blasting, which is only focused on secondary rock-breaking activities. Once caved, the material flows continually and is loaded from the drawpoint to the tipping areas using LHDs and other means, such as scraper winches. Different rock fragmentations register in the drawpoint as loading continues. The sizes range from fine to medium fragmentation and the undesirable oversized rocks that cause hang-ups and blockages. Blockages and hang-ups disturb the flow of material, which negatively impacts compliance with the mining plan and draw control schedule. The hang-ups are treated with secondary rock-breaking equipment to make drawpoints available for loading. However, if the mechanical availability of rock-breaking equipment is low, drawpoints remain idle beyond acceptable limits. Additionally, factors such as the availability of experienced miners to address challenging hang-ups, in instances where treated hang- ups remain unresolved as a result of treatment failure, and the prioritisation of adjacent draw points for loading to restore macro material flow, especially in cases of high hang- ups, can significantly contribute to longer idle periods as well. In this regard, this research aimed to understand the impact that secondary rock-breaking equipment has on the mining plan at the PMC block cave. The research conducted an empirical study of the Secondary Breaking Unit, which forms part of the Mining Operations responsible for all secondary rock-breaking activities at the Palabora Mining Company (PMC). The secondary rock-breaking equipment types that this study investigated include the Medium Reach Rigs, Water Cannons, and Mobile Rock-Breakers. A 52-week data obtained from PMC was used for this study, covering iv the period from January to December 2021. The data pertain to secondary rock- breaking equipment availability and utilisation, cave availability, loading compliance, downtime contribution factors, and in-situ grade. The correlation and regression analysis methods were used for the analyses of data to answer the research questions. In this study, the copper content derived from the mined tonnes and in-situ grade was used as a proxy for the mining plan and it excludes uncontrollable factors such as recovery, pricing, and exchange rates. Firstly, the study sought to determine whether the PMC’s Lift 1 block cave is behaving as predicted and it was concluded that it is. Secondly, the study sought to determine if there is a relationship between the mining plan, using the deviation from the mining plan, and cave availability and loading compliance respectively. It was established that the correlation between the deviation from the mining plan and cave availability was not strong enough whereas the correlation between the deviation from the mining plan and loading compliance was strong enough to derive a predictive equation which was validated. Thirdly, the research sought to establish the minimum acceptable rock-breaking equipment availability at PMC. It was found that the minimum acceptable availability was cautiously 60% based on the historical data. Fourthly, the research sought to determine the research strategy that can improve the rock-breaking equipment availability from the low of 42% in 2021 to at least 60%. The mine’s target availability is 65%. To achieve this, categories of downtime for MRR, MBR and WC with high impact were identified using the Pareto principle. The maintenance overrun downtime category which was one of those with a high-impact downtime was found to be common in all three equipment types with a combined duration of 10 695 hours or 44.4 days per operational equipment per year. In this regard, the Schedule Maintenance strategy was suggested.