School of Geosciences (ETDs)
Permanent URI for this communityhttps://hdl.handle.net/10539/38010
Browse
Item Late Triassic to Early Jurassic ecology: An insight into diet and trophic levels using non-traditional Ca isotopes(University of the Witwatersrand, Johannesburg, 2023-07) Davechand, Priyanka; Bybee, Grant; Choiniere, JonahThe diet and trophic structuring of organisms in deep time is poorly understood, making comparison of ancient and modern ecosystems challenging. Proxy data (e.g., dental morphology, jaw muscle reconstruction) remain the most common mode of palaeodietary inference, but the correlative strength of these proxies remains untested due to a lack of direct evidence and an incomplete sampling of palaeobiodiversity. These major challenges in palaeodietary reconstruction can be overcome using novel geochemical markers in fossilised tooth enamel, which provide direct evidence of palaeodiet and trophic relationships. Traditional stable isotopes of carbon, oxygen, and nitrogen have been used in the past to infer palaeodiets, but these elements are susceptible to diagenetic alteration during fossil preservation and require large sample amounts for assays. In contrast, non-traditional calcium (δ44/42Ca) isotopes are less susceptible to diagenesis and require significantly smaller sample amounts. This, together with the fractionation that Ca isotopes undergo as a bio-essential element, allows δ44/42Ca to be utilised on a broad range of palaeontological questions including assessing dietary range and trophic level. The diverse ecosystems of the Elliot Formation (Karoo Supergroup) in South Africa are represented by abundant fossils of a variety of reptilian and mammalian stem lineages that coexisted during the latest Triassic–earliest Jurassic interval (218–190 Ma). The broad range of body sizes, inferred dietary preferences, and phylogenetic positions make the Elliot palaeoecosystems an ideal natural laboratory in which to apply palaeodietary isotopic tools. This dissertation aims to assess the palaeotrophic divisions of the Elliot Formation vertebrates using non-traditional δ 44/42Ca isotopes. This research uses ion-exchange chromatography on vertebrate tooth enamel to assess the palaeodietary preferences of Elliot Formation reptilian and mammalian lineages. To obtain these data, existing techniques for sample preparation of non-traditional δ 44/42Ca isotopes were modified and optimised at the Wits Isotope Geoscience Laboratory (WIGL) at the University of the Witwatersrand. δ 44/42Ca analysis was conducted on a variety of specimens across a broad range of amniote lineages, ranging from: dinosaurs such as presumed herbivorous sauropodomorphs Massospondylus and Aardonyx, the presumed omnivorous ornithischian (Lesothosaurus and Heterodontosaurus), and the presumed carnivorous theropod Megapnosaurus; to cynodont therapsids (Tritylodon, Pachygenelus and Scalenodontoides); to pseudosuchians such as the crocodylomorphs Protosuchus and Orthosuchus and earlier branching taxa (‘rauisuchians’ and poposauroids). A leaching procedure was also tested to ensure that the results produced were not influenced by diagenetic biases. Once consistent and reproducible methods were finalised, column chemistry and Multicollector-Inductively Coupled Plasma Mass Spectrometery (MC-ICPMS) analysis was conducted on the different Karoo-aged specimens. There are various outcomes from this dissertation. One important outcome was the optimisation of time for Ca separation using ion-exchange chromatography. This allowed for a shorter chemical preparation time and increased the number of analyses completed per session. Another improvement of the method was that the leaching procedure can be used to control for any diagenetic biases by removing secondary calcite in samples as old as those from the Triassic–Jurassic period. Elliot taxa were then analysed, and significant differences were found between δ 44/42Ca values of large carnivorous pseudosuchians (‘rauisuchians’; -0.45 ‰ to -1.17 ‰) and co occurring herbivorous sauropodomorph genera (-0.26 ‰ to -0.69 ‰). These results indicated that non-traditional δ 44/42Ca isotopes can be used to understand trophic structures and palaeodiets in ecosystems at least 210 million years old. We also found that while some taxa had δ44/42Ca isotope values in-line with their presumed diets, other taxa had more diverse diets than initially presumed. δ 44/42Ca-enriched values in this study provide evidence for herbivory in crocodylomorph and the oldest theropod. There is also a possibility of an omnivorous diet for presumed herbivorous Lesothosaurus as the δ 44/42Ca values are relatively depleted to other herbivores. In addition to diet, calcium plays a major role in the formation of reptilian eggs and there are documented changes in δ 44/42Ca values during the reproductive cycle. To assess this in a living system, Crocodylus niloticus, was analysed to understand if δ 44/42Ca could be used to identify the difference in sex based on the δ 44/42Ca values. No isotopic differences were found between the juvenile male and female Crocodylus niloticus samples. Testing these important ecological principles in temporally constrained formations allows us to understand the historical nature of biodiversity changes, especially across periods when environments on Earth were experiencing extreme conditions. The ability to determine factors such as palaeodiet and palaeotrophic range will enable the development and improvement of palaeoecological analysis. This research presents the first ever δ 44/42Ca values on Karoo-aged vertebrate fossils and will have a large impact on how palaeoecological reconstruction is conducted in the future of palaeosciences.Item Taphonomy and palaeoecology of a monospecific microvertebrate bonebed: behavioural implications for the late Permian (Lopingian) parareptiles(University of the Witwatersrand, Johannesburg, 2024-06) Mukwevho, Lutendo; Choiniere, Jonah; Smith, RogerSociality in the vertebrate fossil record is a dynamic and fast-expanding area of research. Natural history observations of living animals are crucial for understanding and categorizing sociality, but these observations are not feasible for extinct species. Monotaxic bonebeds provide unique opportunities to conceptualize the social behaviours of these extinct animals. An unusual bonebed (SAM-PK-K11289) discovered in the uppermost Permian strata of the Balfour Formation, Karoo Supergroup, in the Eastern Cape presents a window into the sociality of Late Permian reptiles. The use of propagation phase-contrast synchrotron X-ray microcomputed tomography permitted the 3D reconstruction of skeletal elements in SAMPK-K11289, allowing the taxonomic identification of the individuals in the bonebed as most likely belonging to Owenetta. This is the largest aggregation of Owenetta individuals known to date, with a minimum number of 31, which are all very similar in body size. The ontogenetic profile of SAM-PK-K11289 was interpreted by analysing the size distribution of duplicate elements and by making comparisons with other Owenetta and procolophonid specimens. The specimens in the bonebed are all osteologically immature, indicating that they are juveniles. The bonebed occurs in a pedogenically modified ripple cross-laminated siltstone suggesting that a low-energy fluvial sedimentation likely contributed to the modification, disturbance and disarticulation of elements before the bonebed was buried at or very close to the death site. This bonebed provides novel information that directly challenges the popular belief that reptiles and their ancestors are non-social or asocial. Considering the overall circumstances of the bonebed, I hypothesize that Owenetta rubidgei juveniles were socially gregarious and this behaviour may have been induced or influenced by environmental changes during the early extinction phase of the end Permian mass extinction in the Karoo Basin.Item The Stratigraphy of the New Tuli Basin Fossil Sites in Zimbabwe(University of the Witwatersrand, Johannesburg, 2024-09) Zondo, Michel; Choiniere, Jonah; Broderick, Timothy; Munyikwa, DarlingtonThis thesis investigated new fossil-bearing outcrops of the Mpandi Formation of Zimbabwe, exposed at Sentinel Ranch in the Tuli Basin, at sites named “Wedding Hill “and “Pimwe Hill”. The Mpandi Formation exposures at Sentinel Ranch reveal strata that were deposited in fluvial environments that occasionally experienced flooding in otherwise usually dry and hot climatic conditions. These fluvial systems deposited facies that are mostly dominated by fine sediments and their facies have similarities with those found in the main Karoo Basin of South Africa. The use of borehole data helped establish the thickness of the Mpandi Formation and the explorable portion of the formation was estimated to be around 54 metres. Detrital zircons collected from main Sentinel outcrops were used to estimate the maximum depositional age of the sediments using inductively coupled plasma mass spectrometer (LA-ICPMS) methods. Although sparse, the youngest zircons in these samples yielded ages of 199.2 ± 5.1 Ma and 200.8 ± 5.8 Ma, with error bars suggesting maximum depositional ages in the earliest Jurassic or possibly the latest Triassic. A bonebed at the Wedding Hill site produced many postcranial bones of sauropodomorphs, including the articulated leg of a very large individual sauropodomorph, and the first theropod bones recorded from the Mpandi Formation at Sentinel. The discoveries improve our knowledge of the fauna diversity of the Mpandi Formation, permitting more accurate biostratigraphic correlation and enhancing our understanding of the Triassic- Jurassic interval.