School of Molecular & Cell Biology (ETDs)

Permanent URI for this communityhttps://hdl.handle.net/10539/38016

Browse

Search Results

Now showing 1 - 10 of 30
  • Item
    Identifying Markers of Differentiation in Monocyte-Derived-Macrophages
    (University of the Witwatersrand, Johannesburg, 2024-08) Gibson, Matthew Leo; Cronjé, Marianne; Gentle, Nikki
    The importance of monocytes and monocyte-derived macrophages (MDMs) in both adaptive and innate immunity makes their study a topic of interest. Monocytes differentiate into macrophages through transcriptomic alterations, resulting in extensive changes in gene expression. Macrophage colony stimulating factor (M-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) are the two primary cytokines that stimulate this differentiation, and are known to cause partial polarisation towards the M2 and M1 macrophage subtypes, respectively. However, the degree to which this polarisation takes place is not well-characterised. Therefore, this study aimed to use a computational approach to identify the differences and similarities in gene expression changes in macrophages induced with M-CSF and GM-CSF. RNA sequencing data for three human donors was obtained through EBI and used to quantify gene expression changes associated with M-CSF or GM-CSF treatment. Differential gene expression analysis was performed to identify the genes that were differentially expressed as a result of either treatment relative to the untreated monocytes. Over-representation analysis was used to determine the biological processes in which the differentially expressed genes (DEGs) were involved. Finally, transcription factors were identified within the lists of DEGs, as well as the genes encoding their known protein-protein interacting partners. Treatment with M-CSF and GM-CSF induced 4 072 and 4 399 DEGs, respectively, 2 734 of which were common. An examination of these DEGs revealed that the resultant macrophages lacked changes in expression of genes commonly associated with the M1 and M2 polarisation states. An investigation of the DEGs involved in myeloid cell differentiation and the regulation of inflammatory response revealed CCR2, IGF1 and INHBA to be inversely regulated by the two treatments. Furthermore, nine uniquely differentially expressed transcription factors involved in these biological processes were identified, each of which may be contributing to the lack of complete polarisation following differentiation. These results revealed that M-CSF and GM-CSF-induced macrophages, in the absence of activation, experience highly similar gene expression changes and lack changes in the expression of key polarisation marker genes.
  • Thumbnail Image
    Item
    Unveiling the biochemical pathway between Type 2 Diabetes Mellitus and early Alzheimer’s disease
    (University of the Witwatersrand, Johannesburg, 2024-08) Tooray, Shweta; van der Merwe, Eloise
    Research related to Alzheimer's Disease (AD) remains a focal point in neurodegeneration studies. This is due to the severity of AD and the clear necessity for non-palliative treatment approaches, as underscored by the high prevalence of the disease. The combined formation of extracellular senile plaques and neurofibrillary tangles (NFTs) plays a crucial role in the development of the cognitive and behavioural symptoms observed in individuals with AD. Despite extensive research efforts, discovering a definitive cure for the disease remains a challenge. Therefore, it is imperative to explore new perspectives and identify the upstream molecular mechanisms that contribute to the onset of the disease. Metabolic disorders are widely recognized as a significant risk factor for AD. Specifically, the metabolic syndrome, Type 2 Diabetes Mellitus (T2DM), is connected to neurodegeneration by promoting the accumulation of neurotoxins, inducing neuronal stress, affecting synaptic communication, and leading to brain atrophy. Individuals with T2DM have an increased risk of developing dementia, with hyperglycaemia exacerbating the impact of AD by causing mitochondrial dysfunction and oxidative stress through reactive oxygen species (ROS) formation, which are also present in AD. Additionally, patients with T2DM exhibit shorter telomeres linked to cell death, which is an associated risk factor for developing AD. These key pathways involved in connecting T2DM and AD were explored in the current study to enhance the understanding of the early events that precede AD. Glucose uptake was measured and observed to decrease over time as a potentially protective response of the cell. Subsequently, mitochondrial activity, assessed using the Alamar blue assay, was found to be heightened as an initial protective mechanism of Aβ42. This was later overwhelmed by the elevated ROS detected through a Total ROS assay kit, induced by the hyperglycaemic state of T2DM. In turn causing the amount of Aβ42 to become toxic and leading to a decline in mitochondrial DNA (mtDNA) over time as measured through qPCR. Additionally, the increases in ROS induced by hyperglycaemia resulted in oxidative damage to telomeres. Simultaneously, Aβ42 physically hinders telomere-telomerase binding, leading to reduced telomerase activity and consequently, shorter telomeres. Furthermore, this study reveals, for the first time, that the novel glucose-lowering drug (GLD) caused an increase in Aβ42 production in the T2DM cell model, whilst effectively decreasing ROS production over a 24-hour period compared to the untreated cell model. The rise in Aβ42 levels caused by GLD could potentially be working to prevent the increase in hyperglycaemia-induced ROS through its metal chelating antioxidant properties by scavenging ROS, in the presence of oxidative stress associated with T2DM. These findings are indicative of an appealing function of GLD by reducing ROS and thereby impeding the progression towards AD. Hence making GLD an attractive therapeutic option for the treatment and/or prevention of AD.
  • Thumbnail Image
    Item
    Comparison of different bioassay methods for the assessment of dose-response relationships of entomopathogens and toxins against Helicoverpa armigera (Hübner, 1809) (Lepidoptera: Noctuidae)
    (University of the Witwatersrand, Johannesburg, 2024-11) Mogadingoane, Keitumetse Neo; Bouwer, Gustav
    Bioassays are an important tool for developing bioinsecticides against agricultural pests. The aim of this study was to compare two bioassay methods – diet overlay and droplet feeding – to identify the most suitable method for assessing dose-response relationships of entomopathogens and toxins against second instar larvae of Helicoverpa armigera. The toxins used were purified Bacillus thuringiensis Cry1A.105 and Cry2Ab2.820 proteins, the spore-crystal complex (SCC) of B. thuringiensis subspecies kurstaki strain HD-73, and the entomopathogen Helicoverpa armigera nucleopolyhedrovirus (HearNPV). Based on the heterogeneity factor, coefficient of variance (CV) and relative precision, the diet overlay bioassay was determined to be the best fit for use with HD-73 SCC and HearNPV. Suitable bioassay methods could not be determined for the purified B. thuringiensis proteins due to a poor probit model fit and low precision of estimated LC50s and LD50s. Validation of CV and relative precision across bioassays will ensure the most suitable methods are used for sustainable integrated pest management.
  • Thumbnail Image
    Item
    In Silico Exploration of Endocannabinoid Receptor–CB1 and CB2–Interactions Comparing Cannabidiol and Cannabidiol Diacetate: A Comprehensive Computational Study
    (University of the Witwatersrand, Johannesburg, 2024-09) Soobben, Marushka; Achilonu, Ikechukwu Anthony; Sayed, Yasien
    In the rapidly evolving field of cannabinoid research, acetylated phytocannabinoids such as cannabidiol diacetate (CBDDA) have shown prominence due to its enhanced effects compared to its natural counterpart, cannabidiol (CBD). Despite the growing popularity in the consumption of acetylated phytocannabinoids, in-depth research on its pharmacological impact, especially on CB1 and CB2 receptors, remains scarce. With rising reports of adverse reactions to acetylated phytocannabinoids, a molecular understanding of their interaction with endocannabinoid receptors (CBRs) is imperative. This study aimed to fill this knowledge gap by analysing receptor interactions of CBDDA in comparison with receptor interactions of CBD. The study showed that CBDDA forms stronger interactions with CBRs than CBD. Recognised for its heightened potency, the potential of CBDDA as a biopharmaceutical product was examined. CBR interactions with known endocannabinoids, agonists and inverse agonists validated the computational models used to determine the difference in conformational dynamics upon ligand binding. In this work, bioinformatics, molecular docking, and molecular dynamics (MD) simulations were used to determine the structural differences of CBRs when bound to CBD/CBDDA. Simulations in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and water environment successfully mimicked physiological conditions. Subsequent high-throughput virtual screening (HTVS) was conducted using CBDDA as a reference where ligands 142730975 and 21568811 were identified as the top scoring hits for CB1 and CB2 receptors, respectively. The identification of these ligands via HTVS highlights the therapeutic potential of targeting CBRs and the biopharmaceutical potential of CBDDA. This study elucidates the specific interactions of CBD and CBDDA with CB1 and CB2 receptors, laying a foundation for assessing the safety and efficacy of acetylated phytocannabinoids. Overall, the differential interaction of CBDDA compared to CBD with CBRs suggests that acetylation changes the conformational dynamics of CBRs thereby potentially affecting signalling. The identification of ligands 142730975 and 21568811 as strong interactors with the receptors may provide valuable leads for the development of new cannabinoid-based therapies.
  • Thumbnail Image
    Item
    Immunomodulation of the innate immune system: The role of vitamin D in the context of monocytes and macrophages
    (University of the Witwatersrand, Johannesburg, 2024-07) Mol, Bronwyn Ashleigh; Gentle, Nikki; Meyer, Vanessa
    Macrophages are widely distributed cells of the innate immune system with essential roles in homeostasis and disease. Despite concerted efforts, several aspects of macrophage origin, biology, and functionality remain poorly understood. To gain a deeper understanding of these cells, a physiologically relevant, but practical model is required. In vitro, macrophages are principally generated from primary monocytes and monocyte-like cell lines through a natural process referred to as monocyte-to-macrophage differentiation. Monocyte-like cell lines have several practical advantages over the use of primary monocytes with the most commonly employed monocyte-like cell lines being THP-1 and U937 cells. Despite their frequent use, no standardised protocol is employed in the differentiation of monocyte-like cell lines to macrophages. Naturally, this results in large discrepancies and a lack of comparability between studies. Furthermore, many of these protocols are not physiologically relevant and produce macrophages that are not responsive to downstream stimuli. 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the biologically active form of vitamin D3, is a recognised immunomodulator that shows pronounced genomic and non-genomic effects in immune cells. It is also reported as an inducer of monocyte-to-macrophage differentiation, though heavily debated, and a potential macrophage polarisation agent. Despite this, there is relatively little information concerning the role of 1,25(OH)2D3 in monocyte-to-macrophage differentiation and macrophage biology. This study aimed to develop a more physiologically relevant differentiation protocol for the monocyte-like THP-1 and U937 cell lines. This model was then used to investigate the role of 1,25(OH)2D3 in monocyte-to-macrophage differentiation and macrophage biology. Assessment of morphological features and the macrophage markers, CD11b and CD14, indicated that in both THP-1 and U937 cells, differentiation induced using a combination of 5 nM of phorbol 12-myristate 13-acetate (PMA) and 10 nM 1,25(OH)2D3 over 96 hours produced the most mature macrophages. It was observed that 1,25(OH)2D3 alone was not capable of inducing differentiation, yet when combined with PMA, greatly enhanced macrophage features. THP-1 cells are the most widely employed monocyte-like cell line, and are proposed to be the most reflective of primary monocytes. In this study these cells were shown to be more responsive to the effects of 1,25(OH)2D3 than their U937 counterparts. As such, RNA-sequencing was used to explore the efficacy of the proposed differentiation protocols and the influence of 1,25(OH)2D3 on macrophage biology in THP-1 cells. Differential gene expression analysis confirmed that the most effective differentiation protocol was the combination of 5 nM PMA with 10 nM 1,25(OH)2D3 when considering macrophage associated features including transcription factor usage, adhesion, phagocytosis, and cytokine and cytokine receptor expression. This protocol also produced THP-1-derived macrophages that showed increased expression of genes considered to be primary macrophage markers. These results also suggested that THP-1 cells differentiated with neither PMA nor PMA with 1,25(OH)2D3 were likely to represent fully polarised macrophages. 1,25(OH)2D3 treatment of THP-1 monocytes and THP-1-derived macrophages produced distinct gene expression profiles with considerably less overlap than expected. Though 1,25(OH)2D3 treatment often affected similar biological processes in both cell types, the genes within these processes found to be differentially expressed in each cell line were often distinct. For example, in THP-1- derived macrophages, but not THP-1 monocytes, 1,25(OH)2D3 treatment resulted in the increased expression of genes encoding numerous antibacterial peptides, several small GTPases and their regulators. Additionally, several type I interferon response related proteins showed decreased expression, while expression of cytokines and cytokine receptors was variable. This, taken together with the morphological work, indicates two potential roles for 1,25(OH)2D3 in macrophages. Firstly, a protective role as it suggests the potential to prime an antibacterial response, while still balancing inflammatory responses and protecting against autoinflammation induced by aberrant type I interferon response. Secondly, a potential role in determining the morphological features, clearly demonstrated through microscopy, and further suggested by the differential expression of a variety of small GTPases and their regulators.
  • Thumbnail Image
    Item
    Knockdown of long non-coding RNA PANDA improves the cytotoxic effects of cisplatin in oesophageal squamous cell carcinoma cell lines
    (University of the Witwatersrand, Johannesburg, 2024-11) Moonsamy, Sasha Sarasvathee Keshnee; Mavri-Damelin, Demetra; Jivan, Rupal
    Oesophageal cancer is one of the leading causes of cancer death worldwide, of which oesophageal squamous cell carcinoma (OSCC) is the major subtype in southern and eastern Africa. Cisplatin is a well-established drug used to treat multiple cancers, including OSCC. Drug resistance is a major impediment to continued cisplatin therapy in numerous cancers. LncRNA P21-associated non-coding RNA DNA damaged activated RNA (PANDA) is known to function in cell cycle regulation in response to DNA damage and is upregulated in OSCC. We aim to determine lncRNA PANDA expression in South African-derived OSCC cells and establish whether down-regulation of this lncRNA can be used to supplement cisplatin therapy. In this study, MTT assays were performed to determine the EC50 concentrations of cisplatin in OSCC (WHCO1, WHCO5, and SNO) cells and HEK293 cells as a non-cancer control. The cytotoxic effects of cisplatin were exerted in all cell lines, with WHCO5 and SNO appearing more responsive to cisplatin than WHCO1 and HEK293. RT-PCR was used to detect if lncRNA PANDA is expressed in untreated and cisplatin-treated cells and was detected in all cell lines. Knockdown of lncRNA PANDA by siRNA was assessed with RT-PCR. Phase contrast microscopy was used to assess whether siRNA reagents altered cell morphology at 5, 24, and 48 hours post treatment. No significant alterations in cell morphology were observed in WHCO1, WHCO5, SNO, and HEK293 cells. MTT assay evaluation after 48 hours of cisplatin exposure, with or without siRNA for lncRNA PANDA, showed a significant reduction in EC50 concentrations in WHCO5, SNO, and HEK293 cell lines, suggesting that knockdown of lncRNA PANDA may improve cisplatin cytotoxicity in some cell lines. However, the EC50 values were higher with lncRNA PANDA knockdown in the WHCO1 cell line, suggesting that not all OSCC cell types may be responsive to this approach. In conclusion, lncRNA PANDA is expressed in response to cisplatin-induced DNA damage, and the down regulation of lncRNA PANDA improves the cytotoxic effects of cisplatin; however, further investigations are warranted in OSCC.
  • Thumbnail Image
    Item
    Characterising the Role of Cholesterol in Hypoxia-induced Epithelial- Mesenchymal Transition in Breast Cancer
    (University of the Witwatersrand, Johannesburg, 2022) Abdulla, Naaziyah; Kaur, Mandeep
    The cellular epithelial-mesenchymal transition (EMT) process is a complex labyrinth dependent on subversion of critical cellular signalling pathways, which crosstalk extensively to confer cancer cells with characteristics that mediate metastasis. Based on the pleotropic role of cholesterol in the cell, it is not surprising that cancer cells have evolved several mechanisms to facilitate cholesterol dyshomeostasis. In addition to meeting the increased metabolic demands of cancer cells, deregulated cholesterol metabolism also facilitates increased cellular cholesterol availability which is crucial to regulating the activity of protein intermediates in EMT-related signalling pathways. Despite evidence indicating that cholesterol directly regulates signalling pathways related to EMT, no publication to date has attempted to address the effect of EMT induction on cellular cholesterol levels in cancer. To shed light on the dynamics of cholesterol in the relationship between hypoxia and EMT, cholesterol content in MCF-7 cells pre- and post-hypoxia induced EMT was assessed. This dissertation presents findings indicating increased levels of free cholesterol, cholesteryl esters as well as lipid raft cholesterol in MCF-7 cells following hypoxia-induced EMT. Interestingly, MCF-7 cells post- EMT induction displayed increased sensitivity to treatment with cholesterol targeting agents and presented with reversion to an epithelial state as evidenced by the increased expression of epithelial markers, decreased expression of mesenchymal markers and also reduced invasive potential. Importantly, treatment with cholesterol targeting agents is also seen to abrogate the drug resistant potential following hypoxia-induced EMT. Based on these observations, it is proposed that targeting cellular cholesterol could be a promising area to invest in the search for novel therapeutics effective in combatting cancer metastasis
  • Thumbnail Image
    Item
    Insights into silver(I) phosphine complexes in targeting cell death and metastatic mechanisms in malignant cell lines
    (University of the Witwatersrand, Johannesburg, 2023-09) Roberts, Kim Elli; Engelbrecht, Zelinda; Cronjé, Marianne J.
    Cancer is the leading cause of death worldwide, with 18.1 million new cases and 9.6 million deaths reported annually. Cisplatin, a popular chemotherapeutic drug, exhibits certain limitations in terms of selectivity and efficacy. This emphasizes the necessity for novel therapeutic approaches in addressing a variety of cancer types. Multiple studies have shown that silver-based compounds suppress cancer cell proliferation and induce apoptosis. Thirteen novel silver(I) mono-dentate phosphine complexes were investigated for their anticancer effects on seven different human malignant cell lines; A375 non-pigmented melanoma, A549 lung adenocarcinoma, HEP-G2 hepatocellular carcinoma, HT-29 colorectal adenocarcinoma, MCF-7 and MDA-MB-231 breast adenocarcinoma, and SNO oesophageal squamous cell carcinoma. Two non-malignant human cell lines, HEK-293 embryonic kidney cells and MRHF foreskin fibroblast cells, were used to assess the selectivity of the complexes. Cisplatin and the efficient silver(I) phosphine complexes were selected for dose-response experiments to determine IC50 concentrations for the respective cell lines. On the basis of these screening results (chapter two), five difficult-to-treat cancer cell lines, and their most efficient complexes were selected for further investigation. Various cellular characteristics were investigated in chapter three (A549, HEP-G2, HT-29); these included morphological changes, ATP levels, GAPDH levels, Ptd-L-Ser externalization, mitochondrial membrane potential, oxidative stress levels, and the activity of a metabolic enzyme, cytochrome P450 isoform CYP1B1. The antimetastatic activity of the selected complexes was assessed by evaluating their ability to impede the migration of A549 cells. The fourth chapter examines the anticancer effect of selected complexes on hormone-dependent (MCF-7) versus triple-negative (MDA-MB-231) breast cells. Changes in morphology, Ptd-L-Ser externalization, alterations in mitochondrial membrane potential, oxidative stress levels, cytochrome c release, and DNA damage were studied. Furthermore, in chapter five, molecular docking simulations were used to determine whether the most potent silver(I) phosphine complex across all cell lines bonds to estrogen receptor alpha (ER-α) and estrogen receptor beta (ER-β). Seven of the thirteen silver(I) phosphine complexes significantly reduced cell viability in malignant cell lines while being less toxic to non-malignant cells. Complex 4 best targeted all cancer types, with IC50 values ranging from 5.75 to 10.80 µM across malignant cell lines. In the malignant treated cells, morphological changes, reactive oxygen species production, mitochondrial membrane depolarization, and Ptd-L-Ser externalization were observed. Complexes 1 and 4 repressed cell migration in the A549 cells. The presence of damaged nuclei, metabolically inactive mitochondria and cytochrome c translocation from the mitochondria’ intermembrane to the cytosol in MCF-7 cells were observed. These findings suggest that complexes 2, 4 and 7 induced apoptotic cell death. Furthermore, in silico computational predictions suggested a promising interaction between complex 4, and ER-α and ER-β. Overall, this study demonstrates the potential of silver(I) phosphine complexes as anticancer agents, with promising effects on various cancer cell lines.
  • Thumbnail Image
    Item
    Antibacterial activity and susceptibility testing of bacterial isolates from nematodes (Cruznema spp.)
    (University of the Witwatersrand, Johannesburg, 2023-09) Mothapo, Maletjema Magdeline; Lephoto, Tiisetso E.
    Nematodes are unsegmented worms found in different niches associated with a diverse range of bacteria. Various types of nematodes exist including those that are parasitic to insects, known as entomopathogenic nematodes (EPNs). EPNS of genera Steinernema, Heterorhabditis and Oscheuis are symbiotically associated with Xenorhabdus, Photorhabdus and Serratia, respectively. The symbiotic bacteria of EPNs have been reported to produce a broad spectrum of antimicrobial compounds active against human pathogens. The aim of this study was to isolate and identify nematodes and their associated bacteria from soil samples collected from a vegetative farm in Lesotho and study their antimicrobial activity against four species of pathogenic bacteria (E. coli, S. aureus, E. faecalis and P. aeruginosa). An uncharacterized species of Cruznema was isolated and named Cruznema NTM-2021 (GenBank 18S rDNA accession number: OQ408141). Based on the BLASTN search incorporating the phylogenetic analysis of the 16S rDNA region, three genera of bacteria were identified as Alcaligenes sp., Enterobacter sp. and Elizabethkingia sp. The study revealed that all three bacterial isolates were pathogenic to Tenebrio molitor. Symbiosis tests, using lipid agar method demonstrated the ability of the host nematodes to develop and reproduce in the presence of their associated bacteria. Bacterial supernatants of Alcaligenes sp. and Enterobacter sp. showed some inhibitory activity against Escherichia coli and Enterococcus faecalis, by disk diffusion method. Staphylococcus aureus and Pseudomonas aeruginosa were the most resistant bacteria to supernatants of the three isolates. This study also showed that the Alcaligenes, Enterobacter, and Elizabethkingia species isolated from Cruznema NTM-2021 were resistant to ampicillin, amoxicillin, cefuroxime/sodium, vancomycin and cephalothin but susceptible to gentamicin.
  • Thumbnail Image
    Item
    HIV-1 subtype C protease: enzyme kinetics, thermodynamics, and X-ray crystal structure
    (University of the Witwatersrand, Johannesburg, 2023-09) Dlamini, Nozinhle Precious; Sayed, Yasien
    Human immunodeficiency virus (HIV), a precursor for AIDS is still one of the most devastating pandemics in history. In 2021 alone there were 650 000 deaths associated with the virus and the number of people living with the infection was recorded to be 38.4 million globally. Sub-Saharan Africa suffers the most burden of the virus with approximately 8.3 million people living with virus, HIV-1 subtype C is the main driver of the disease in South Africa and accounts for 46% of global infections. Even with these alarming statistics this subtype is not the main focus point for the majority of HIV-1 research which mainly focuses on subtype B though it only accounts for 12% of infections globally. There is no vaccine or cure against HIV; however, great strides have been made in suppressing the virus. Viral suppression drugs have been developed to target different stages of viral replication such as those targeting the three important enzymes (protease, reverse transcriptase and integrase). In this study the focus will be on HIV-1 subtype C protease. This is a homodimeric aspartyl protease with 99 amino acids in each monomer. It plays a crucial role in the replication cycle of HIV-1 by producing mature infectious virions through cleavage of the Gag and Gag-Pol polyproteins. The subtype C protease differs from subtype B protease in that it has eight naturally occurring polymorphisms which are substitution mutations, some occurring in different regions of the protease with some in the fulcrum (T12S, I15V and L19I), others in the hinge region (M36I and R41K), with H69K and L89M found in the loops and I93L in the α helix. In this study, structural and functional characterisation of HIV-1 subtype C protease was carried out. The secondary structure was characterised using far-UV CD, which is a technique that measures the difference in left and right circularly polarised light. The subtype C protease was estimated to be predominantly β-sheeted, with spectra showing a maximum at 195 nm and a minimum between 215-225 nm. Tertiary structure characterisation of protease was performed using fluorescence spectroscopy. The maximum emission at 347 nm close to that of water (350 nm), demonstrated that the tertiary conformation of the HIV-1 protease was conserved, and that the tryptophan residues within the protease are solvent exposed. SE-HPLC was used to characterise the quaternary structure of the protease and the homodimeric size was determined to be approximately 22 kDa. Steady-state enzyme kinetics to assess the catalytic activity of the subtype C protease was performed using a fluorogenic substrate. The activity of the enzyme was confirmed, with the specific activity of 24.22±1.72 µmol. min-1.mg-1 and the binding of the substrate to the HIV-1 protease was demonstrated by the KM value of 79.546±6.491 µM. This correlates to literature indicating that the substrate was weakly bound and that a high substrate concentration will be required to reach the maximum velocity (Vmax), and Vmax was determined to be 0.036±0.003 µmol. min-1. Enzyme kinetics was coupled with displacement isothermal titration calorimetry for determination of thermodynamics parameters using second generation PIs (atazanavir, darunavir and lopinavir). Thermodynamic studies indicated that the HIV-1 protease has a high affinity for LPV (Kd = 1 nM), compared to ATV (Kd = 18.57nM) and DRV (Kd = 42.26 nM) and binding reactions were all spontaneous with ΔG values(ATV = -43.39 kJ/mol, DRV = -41.39 kJ/mol and LPV = -50.51 kJ/mol). The values also indicated that LPV complexed with HIV-1 is more a stable complex. Also, all the binding reactions were exothermic as indicated by the negative ΔH values of ATV = -45.54 kJ/mol, DRV = -55.62 kJ/mol and LPV = -54.71 kJ/mol. The entropy of all the reactions were determined to be unfavourable with the -T∆S of DRV = 14.23 kJ/mol followed by LPV: 4.2 kJ/mol and ATV: 2.15 kJ/mol. Overall this suggested that all the binding reactions were enthalpically driven. Furthermore, the three-dimensional structure of the HIV-1 subtype C protease was elucidated using X-ray crystallography. The three-dimensional structure the HIV-1 CSA (PDB ID: 8CI7) was solved at a 2.4 Å resolution which is better than the 2.7 Å (PDB ID: 3U71) initially solved in our lab. The high-resolution three-dimensional structure of the protease will provide precise information about the arrangement of atoms within the protease molecule, thus enabling the design and development of protease inhibitors that will be specific for the subtype C protease. This study emphasised the significance of investigating subtype C protease in the context of enzyme kinetics, thermodynamics and detailed X-ray crystallography.