School of Molecular & Cell Biology (ETDs)
Permanent URI for this communityhttps://hdl.handle.net/10539/38016
Browse
Item Effects of acidification on the survival of pathogens in reconstituted infant formula(University of the Witwatersrand, Johannesburg, 2023-10) Nemakonde, Mufunwa; De Maayer, PieterInfants are at a high risk of developing food-borne illnesses due to the consumption of powdered infant formulas (PIFs) contaminated by pathogenic microorganisms. These pathogens may be introduced during PIF production, transportation or during preparation and storage due to poor hygiene practices. Therefore, it is important to improve the microbiological safety of PIFs to reduce illness. Manufacturers have added further measures to ensure continued control of pathogenic microorganisms during the reconstitution and consumption, including the addition of prebiotics and probiotics, as well as acidification of the PIFs, which negatively affect the growth of pathogens. Different organic acids have been biologically or chemically added to commercial PIFs, however, little is known about the efficacy of the different acids in controlling pathogen growth post-reconstitution. The present study aimed to evaluate and compare the effects of two acids, namely citrate and lactate, integrated in commercial PIFs from two manufacturers on pathogen growth within the products. In Chapter 1, we present a review of the current literature pertaining to PIF production and consumption, its microbiological safety and key problem pathogens, as well as measures to control these pathogens (with specific emphasis on PIF acidification). In Chapter 2, the methodology of the present study is discussed. The effects of lactate and citrate incorporated in commercial PIFs against eight key PIF pathogens was evaluated using plate-based assays. Furthermore, the efficacy of PIF acidification at different storage temperatures and over prolonged storage periods was determined. Finally, to validate the effect of acidity on controlling pathogen growth, a spectrophotometric approach was used. Chapter 3 presents and discusses the key findings of the study. PIF acidification was found to negatively affect the growth of pathogens in comparison to the non-acidified infant formula. Acidification and storage at suboptimal temperatures resulted in little to no microbial growth. Lactate acidification of PIFs demonstrated greater inhibitory effects against most pathogens compared to citrate acidification. Further, lactate was found to have a bactericidal effect on the growth of some pathogens. Similarly, Luria Broth acidification resulted in the reduction of microbial growth. This validated that the acids and not other constituents of the infant formula were responsible for the inhibitory effect. Finally, Chapter 4 provides a summary of the key findings as well as recommendations and guidance on future studies which could be undertaken to enhance the effective control of pathogens in powdered infant formulas, thereby ensuring a safe and nutritious food source for infants.Item Exploring temporal changes in the malting barley seed microbiome with meta-omics to understand nitrogen content effects(University of the Witwatersrand, Johannesburg, 2024-10) Tshisekedi, Kalonji Abondance; De Maayer, Pieter; Botes, AngelaBarley (Hordeum vulgare L.) is a critical cereal crop, particularly in beer production, where it plays a significant role in the economy, especially in South Africa. Despite its importance, the barley seed microbiome, which affects seed storage and quality, is not well understood. This research addresses two key questions: (1) how microbial composition and function evolve during storage and (2) how the inherent nitrogen content of the grain affects these dynamics. Using metagenomic and metaproteomic approaches, eight barley samples from the Kadie cultivar, stored for various durations (harvest, three, six, and nine months) with high and low nitrogen content, were analysed. Metagenomic sequencing revealed a predominance of bacterial sequences and minimal fungal presence, with storage time having a greater impact on microbial diversity than nitrogen content. However, specific bacterial genera such as Erwinia, Pantoea, Pseudomonas, and Stenotrophomonas showed nitrogen-dependent prevalence. Metagenome-assembled genomes (MAGs) were reconstructed, representing 26 bacterial genera, with minimal shared orthologues, highlighting taxonomic diversity. Functional analysis identified key metabolic pathways and carbohydrate-active enzymes (CAZymes) essential for microbial adaptation during storage. Metaproteomic analysis further showed the active expression of proteins related to nutrient transport and stress response, indicating functional changes over storage time. Overall, this research enhances the understanding of the barley seed microbiome, providing valuable insights into storage practices that could improve brewing quality and agricultural sustainability.Item Genome sequencing of the Southern Ground Hornbill (Bucorvus leadbeateri)(University of the Witwatersrand, Johannesburg, 2024-10) Patel, Jasmin Bharatkumar; De Maayer, Pieter; Mollett, JeanThe Southern Ground Hornbill (SGH – Bucorvus leadbeateri) is one of the largest hornbill species worldwide, known for its complex social structures and breeding behaviours. These birds, endemic to Africa, have been of great concern due to their declining populations and disappearance from historic ranges. Despite being the focus of numerous conservation efforts, with research forming an integral part of these initiatives, there is a lack of knowledge regarding the molecular biology aspects of this bird species. This study bridges the gap by presenting the first whole genome sequence of the SGH. The SGH genome was further explored using comparative genomics, genetic variant, and selection analysis, providing deeper insights into the evolution and adaptation of this species. Chapter 1 comprehensively reviews pertinent literature on various aspects of avian evolution, including the role genomics has played in elucidating how these species have adapted and evolved. Furthermore, the current body of knowledge on the SGH is explored. In Chapter 2 the entire genome sequence of the SGH was sequenced using Illumina short-read and Pacific BioSciences long-read datasets. Subsequently, the performance of various assembly approaches was evaluated to attain a high-quality assembly of the SGH. This was coupled with parameter optimisation and reference-based refinement to improve the SGH draft genome assembly. The final draft genome assembly was structurally annotated, providing insight into the genetic blueprint underpinning the SGH. Chapter 3 presents the comparative genomic analysis of the SGH with the genomes of available hornbill species from the genera Bucorvus (Bucorvus abyssinicus and SGH) and Buceros (Buceros bicornis and Buceros rhinoceros subsp. silvestris). This included analysis of the pangenome of the hornbill species, functional characterisation of the core and genus-specific elements of the pan-genome and analysis of orthogroups with evidence of paralogy. In Chapter 4, a species-level comparative genomic analysis of the SGH and the Abyssinian Ground Hornbill (AGH) was performed. Here differences in the species-specific proteome of the two species were analysed and the functional implications of these differences on the adaptation and survival of these species were evaluated. Furthermore, genetic variations between the SGH and AGH were identified and selection analysis of key protein-coding genes with high-impact variants was undertaken. This provided insight into the genetic diversity between the SGH and AGH. Finally, the implications of the study on the understanding of the genetic basis underlying the evolution and adaptation of the SGH is discussed and the future perspective of large-scale population genetic studies is provided.Item Metagenome sequencing of the lichen species Flavopunctelia flaventior and Parmotrema tinctorum from Gauteng, South Africa(University of the Witwatersrand, Johannesburg, 2024-06) Katane, Malebogo Dimpho; Botes, Angela; De Maayer, PieterLichens are defined as a mutualistic association between fungi (mycobiont) and an algal and/or cyanobacterial photobiont. Increasing evidence suggests that lichens comprise more diverse microorganisms than initially thought, where lichens represent an interaction between archaea, bacteria, filamentous fungi, green algae, yeasts, and viruses. Not many comprehensive studies have been done of South African lichen species. The present study employed metagenome sequencing to investigate the lichen microbiomes of Flavopunctelia flaventior and Parmotrema tinctorum sampled from Bryanston, Gauteng province, South Africa. Furthermore, the roles played by the members of the lichen microbiome within symbioses were also studied by functionally annotating the assembled metagenomes of the two lichen species. This study sets the groundwork for future studies on South African lichen species. In Chapter 1, an extensive literature review on lichens, their ecology, taxonomy and biology is discussed. Furthermore, it delves into the existence and shape of the microbiome beyond the mycobiont and the photobiont. Additionally, possible roles that the lichen microbiome may play in sustaining the lichen symbiosis is also discussed. In Chapter 2, the metagenomes of two lichen species were sequenced, the quality of the reads were assessed, and taxonomic classification was performed to elucidate the composition of microorganisms associated with each lichen species. Both microbiomes were dominated by bacteria, with limited fungi, viruses, and archaea. The majority of the identified phyla and genera were found to be common between the two lichen species. Similarities in the core microbiome was accounted for by the fact that F. flaventior and P. tinctorum were sampled from the same location and they are both members of the Parmeliaceae family. In Chapter 3, the metagenomic reads were assembled and functionally annotated using various bioinformatics tools. We demonstrate that the members of the lichen microbiome are involved in the cycling of nutrients such as carbon and nitrogen. We also found differences in carbon fixation pathways, which were attributed to the accessory microbiome. Finally, a summary highlights key results and recommendations on future work that could be undertaken to further provide insight into biological pathways essential to sustain the lichen symbiosis.Item The genome sequence of the Yellow-billed Duck (Anas undulata)(University of the Witwatersrand, Johannesburg, 2024-01) Ngxamani, Namhla; De Maayer, Pieter; Mollett, JeanNo abstract given