3. Electronic Theses and Dissertations (ETDs) - All submissions

Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    The synthesis and evaluation of BIS-1,2,3- triazolylidene(carbazolide) gold complexes as anticancer agents
    (2021) Van der Westhuizen, Danielle
    Gold pincer complexes were evaluated for their potential as suitable anticancer agents. The use of a multidentate pincer ligand composed of an anionic carbazolide backbone and two flanking 1,2,3 triazol 5 ylidenes trz was proposed for the effective redox stabilization of the gold III complex under physiological conditions.
  • Item
    Class pi glutathione S-transferase: unfolding and conformational stability in the absence and presence of G-site ligands
    (1996) Erhardt, Julija
    The glutathione S-transferases (GST) are a supergene family of h0111o-or heterodimeric Phase II detoxification enzymes which catalyse the S-conjugation between glutathione and an electrophilic substrate. The active site can be divided into two adjacent functional regions; a highly specific Gssite for binding the physiological substrate glutathione and a nonspecific If-site for binding nonpolar electrophilic substrates. Unfolding of porcine class Pi isoenzyme (pGSTPl~l) was monitored under equilibrium conditions using different physicochemical parameters. The coincidence of unfolding curves obtained with functional and structural probes, the absence of thermodynamically stable intermediates such as a folded monomer, and the dependence of pGSTPl··l stability upon protein concentration, indicate a cooperative and concerted two-state unfolding transition between native dimeric pGSTPl-l and unfolded monomeric enzyme. Equilibrium and kinetic unfolding experiments employing tryptophan fluorescence and enzyme activity measurements were preformed to study the effect of ligand binding to the G-site on the unfolding and stability of the porcine class pi glutathione S-transferase against urea. The presence of glutathione caused a shift in the equilibrium-unfolding curves towards lower urea concentrations and enhanced the first-order rate constant for unfolding suggesting a destabilisation of the pGSTPl-l structure against urea. The presence of either glutathione sulphonate or S-hexylglutathione, however, produced the opposite effect in that their binding to the G-site appeared to exert a stabilising effect against urea. The binding of these glutathione analogues also reduced significantly the degree of cooperativity of unfolding indicating a possible change in the protein's unfolding pathway.
  • Item
    Development of lymphocyte specific internalising aptamers
    (2014-04-23) Millroy, Laura Ann
    Aptamers are synthetic nucleic acid molecules designed to bind with high specificity and affinity to a selected target. The aptamer selection method, called the systematic evolution of ligands by exponential enrichment (SELEX), was first described in 1990 and has been adapted for the selection of aptamers for a number of applications. One such application is the selective targeting of cells for therapeutic delivery. This thesis explores this application with the selection and characterisation of internalising aptamers specific to the T lymphocyte specific receptor, CD7. The CD7 receptor is expressed on thymus derived progenitor lymphocytes and remains after T cell activation and expression of the CD4 receptor. As such, the CD7 receptor is a noteworthy target for lymphocyte cancers, HIV-1 and other T lymphocyte tropic viruses. A heterogeneous pool of internalising CD7-aptamers was enriched through six rounds of positive selection in a stably transduced CD7-HeLa cell line. Aptamers were selected using a modified whole cell SELEX method that selected specifically for internalising aptamers. Aptamer specificity for CD7-HeLa cells over HeLa cells was screened by flow cytometry. CD7 specific aptamers were screened for binding after blocking CD7-HeLa cells with an anti-CD7 antibody. Eight CD7 specific aptamer clones were selected from CD7-HeLa screening for evaluation in Jurkat cells (T lymphocyte cell line endogenously expressing the CD7 receptor). Three aptamer clones showed high level binding to Jurkat cells by flow cytometry (CSIR 3.14, CSIR 3.37 and CSIR 3.42). Kinetic analysis of aptamer internalisation was analysed using flow cytometry and determined to be within the femtomolar range. Aptamer CSIR 3.14 had a dissociation constant of 2.1 fM and an association rate of 4.7 ± 2.4 × 105 Molar-1minute-1, aptamer CSIR 3.37 had a dissociation constant of 0.23 fM and an association rate of 4.3 ± 3.3 × 106 Molar-1minute-1 and aptamer CSIR 3.42 had a dissociation constant of 1.1 fM with an association rate of 7.9 ± 5.1 × 105 Molar-1minute-1. Aptamer CSIR 3.14 internalisation was tracked by confocal microscopy and the kinetics calculated with an association rate of 6.3 × 104 Molar-1minute-1 and Kd of 13 fM. Deletions within the CSIR 3.14 sequence that altered the predicted structures significantly reduced the aptamer binding. Combined, the data presented in this thesis identifies aptamer CSIR 3.14 as a lymphocyte specific internalising aptamer with potential for therapeutic delivery.
Copyright Ownership Is Guided By The University's

Intellectual Property policy

Students submitting a Thesis or Dissertation must be aware of current copyright issues. Both for the protection of your original work as well as the protection of another's copyrighted work, you should follow all current copyright law.