3. Electronic Theses and Dissertations (ETDs) - All submissions

Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    The algebra and geometry of continued fractions with integer quaternion coefficients
    (2015-05-06) Mennen, Carminda Margaretha
    We consider continued fractions with coe cients that are in K, the quaternions. In particular we consider coe cients in the Hurwitz integers H in K. These continued fractions are expressed as compositions of M¨obius maps in M R4 1 that act, by Poincar´e extension, as isometries on H5. This dissertation explores groups of 2 2 matrices over K and two particular determinant type functions acting on these groups. On the one hand we find M R4 1 , the group of orientation preserving M¨obius transformations acting on R4 1 in terms of a determinant D [19],[38]. On the other hand K may be considered as a Cli ord algebra C3 based on two generators i and j, or more generally i1 and i2, where i j = k or i1i2 = k. It is shown this group of matrices over C4 defined in terms of a pseudo-determinant [1],[37] can also be used to establish M R4 1 . Through this relationship we are able to connect the determinant D to the pseudo-determinant when acting on the matrices that generate M R4 1 . We explore and build on the results of Schmidt [30] on the subdivision of a Farey simplex into 31 Farey simplices. These results are reinterpreted in H5 with boundary K1 using the group of M¨obius transformations on R4 1 [19], [38]. We investigate the unimodular group G = PS DL(2;K) with its generators and derive a fundamental domain for this group in H5. We relate this domain to the 24-cells PU and r that tessellate K. We define the concepts of Farey neighbours, Farey geodesics and Farey simplices in the Farey tessellation of H5. This tessellation of H5 by a Farey pentacross under a discrete subgroup G of M R4 1 is analogous to the Farey tessellation by Farey triangles of H2 under the modular group [31]. The result in Schmidt [30], that for each quaternion there is a chain of Farey simplices that converge to , is reinterpreted as a continued fraction, with entries from H, that converges to . We conclude with a review of Pringsheim’s theorem on convergence of continued fractions in higher dimensions [5].
  • Item
    The action of the picard group on hyperbolic 3-space and complex continued fractions
    (2014-08-11) Hayward, Grant Paul
    Continued fractions have been extensively studied in number theoretic ways. These continued fractions are expressed as compositions of M¨obius maps in the Picard group PS L(2;C) that act, by Poincar´e’s extension, as isometries on H3. We investigate the Picard group with its generators and derive the fundamental domain using a direct method. From the fundamental domain, we produce an ideal octahedron, O0, that generates the Farey tessellation of H3. We explore the properties of Farey neighbours, Farey geodesics and Farey triangles that arise from the Farey tessellation and relate these to Ford spheres. We consider the Farey addition of two rationals in R as a subdivision of an interval and hence are able to generalise this notion to a subdivision of a Farey triangle with Gaussian Farey neighbour vertices. This Farey set allows us to revisit the Farey triangle subdivision given by Schmidt [44] and interpret it as a theorem about adjacent octahedra in the Farey tessellation of H3. We consider continued fraction algorithms with Gaussian integer coe cients. We introduce an analogue of Series [45] cutting sequence across H2 in H3. We derive a continued fraction expansion based on this cutting sequence generated by a geodesic in H3 that ends at the point in C that passes through O0.
  • Item
    The geometry of the hecke groups acting on hyperbolic plane and their associated real continued fractions.
    (2014-06-12) Maphakela, Lesiba Joseph
    Continued fractions have been extensively studied in number theoretic ways. In this text we will consider continued fraction expansions with partial quotients that are in Z = f x : x 2 Zg and where = 2 cos( q ); q 3 and with 1 < < 2. These continued fractions are expressed as the composition of M obius maps in PSL(2;R), that act as isometries on H2, taken at 1. In particular the subgroups of PSL(2;R) that are studied are the Hecke groups G . The Modular group is the case for q = 3 and = 1. In the text we show that the Hecke groups are triangle groups and in this way derive their fundamental domains. From these fundamental domains we produce the v-cell (P0) that is an ideal q-gon and also tessellate H2 under G . This tessellation is called the -Farey tessellation. We investigate various known -continued fractions of a real number. In particular, we consider a geodesic in H2 cutting across the -Farey tessellation that produces a \cutting sequence" or path on a -Farey graph. These paths in turn give a rise to a derived -continued fraction expansion for the real endpoint of the geodesic. We explore the relationship between the derived -continued fraction expansion and the nearest - integer continued fraction expansion (reduced -continued fraction expansion given by Rosen, [25]). The geometric aspect of the derived -continued fraction expansion brings clarity and illuminates the algebraic process of the reduced -continued fraction expansion.
Copyright Ownership Is Guided By The University's

Intellectual Property policy

Students submitting a Thesis or Dissertation must be aware of current copyright issues. Both for the protection of your original work as well as the protection of another's copyrighted work, you should follow all current copyright law.