Electronic Theses and Dissertations (PhDs)
Permanent URI for this collectionhttps://hdl.handle.net/10539/38017
Browse
Search Results
Item Biophysical evaluation of the kinetics, thermodynamics, and structure-stability relationship of Wuchereria bancrofti glutathione transferase in comparison with human µ and π glutathione transferases(University of the Witwatersrand, Johannesburg, 2024-06) Oyiogu, Blessing Oluebube; Achilonu, Ikechukwu AnthonyLymphatic filariasis is an endemic disease caused mainly by the Wuchereria bancrofti parasite and has been classified as a major neglected tropical disease. The emergence of drug-resistant strains of W. bancrofti and the limited efficacy of the available drugs on adult worms threatens the eradication of the disease. W. bancrofti glutathione S-transferase (WbGST) is a homodimeric enzyme central to detoxifying electrophilic compounds in the parasite due to its lack of cytochrome P-450. Therefore, WbGST is a potential therapeutic target for lymphatic filariasis. Bromosulphophthalein (BSP) and epigallocatechin gallate (EGCG) were previously shown to inhibit glutathione S-transferase activity. In this study, the interaction of WbGST with BSP and EGCG in comparison with human glutathione S-transferase P1-1 (hGSTP1-1) and human glutathione S-transferase M1-1 (hGSTM1-1) isoforms was investigated. Soluble WbGST, hGSTP1-1 and hGSTM1-1 were recombinantly produced and purified successfully to homogeneity. Glutathione and 1-chloro-2,4-dinitrobenzene conjugation assay was employed to analyse the enzyme activity, kinetics and inhibitory potency of the compounds. Spectroscopic studies were employed to investigate the functional and structural impact of ligand binding to the enzymes. Both thermal and chemical stability studies were performed, and binding energetics were analysed using isothermal titration calorimetry. The activity of WbGST was predominantly inhibited, with IC50 values of 5 μM for BSP and 12 μM for EGCG. The EGCG displayed uncompetitive and mixed modes of inhibition towards WbGST with respect to glutathione and hydrophobic binding sites, respectively. Whereas BSP showed a mixed type of inhibition for both active sites of WbGST. Ligands reduced the turnover rates (kcat) and the catalytic efficiencies (kcat/KM) of the enzymes. Upon ligand binding, 8-anilino-1-napthalene sulphonate was displaced from WbGST and hGSTM1-1 by 67%(BSP), 24%(EGCG) and 72%(BSP), 5%(EGCG), respectively; suggesting that the ligands bind to the 8-anilino-1-napthalene sulphonate binding site. Stability studies indicate that WbGST is the least stable of the three enzymes and that glutathione increases its stability. Isothermal titration calorimetry showed that BSP binds to multiple sites in WbGST with binding at site-1 (S1) and site-2 (S2), which are entropically and enthalpically driven, respectively. S1 showed a higher affinity for BSP than S2. EGCG binding to WbGST was entropically driven. BSP had a higher affinity for the enzymes than EGCG. All the results indicated that the ligands significantly impact WbGST more than the human GSTs. Further investigations, such as crystallography and molecular dynamics simulations, will shed more light on the ligan-protein interactions on a molecular level. Overall, this study suggests that BSP and EGCG are efficient inhibitors of WbGST that probably bind to both L and H-sites of WbGST, altering catalytic activity of the enzyme. The unique properties of the L-site are particularly suitable for rational drug design. Therefore, both ligands can be repurposed as new-generation therapeutics against filariasis.Item Exploring temporal changes in the malting barley seed microbiome with meta-omics to understand nitrogen content effects(University of the Witwatersrand, Johannesburg, 2024-10) Tshisekedi, Kalonji Abondance; De Maayer, Pieter; Botes, AngelaBarley (Hordeum vulgare L.) is a critical cereal crop, particularly in beer production, where it plays a significant role in the economy, especially in South Africa. Despite its importance, the barley seed microbiome, which affects seed storage and quality, is not well understood. This research addresses two key questions: (1) how microbial composition and function evolve during storage and (2) how the inherent nitrogen content of the grain affects these dynamics. Using metagenomic and metaproteomic approaches, eight barley samples from the Kadie cultivar, stored for various durations (harvest, three, six, and nine months) with high and low nitrogen content, were analysed. Metagenomic sequencing revealed a predominance of bacterial sequences and minimal fungal presence, with storage time having a greater impact on microbial diversity than nitrogen content. However, specific bacterial genera such as Erwinia, Pantoea, Pseudomonas, and Stenotrophomonas showed nitrogen-dependent prevalence. Metagenome-assembled genomes (MAGs) were reconstructed, representing 26 bacterial genera, with minimal shared orthologues, highlighting taxonomic diversity. Functional analysis identified key metabolic pathways and carbohydrate-active enzymes (CAZymes) essential for microbial adaptation during storage. Metaproteomic analysis further showed the active expression of proteins related to nutrient transport and stress response, indicating functional changes over storage time. Overall, this research enhances the understanding of the barley seed microbiome, providing valuable insights into storage practices that could improve brewing quality and agricultural sustainability.Item Immunomodulation of the innate immune system: The role of vitamin D in the context of monocytes and macrophages(University of the Witwatersrand, Johannesburg, 2024-07) Mol, Bronwyn Ashleigh; Gentle, Nikki; Meyer, VanessaMacrophages are widely distributed cells of the innate immune system with essential roles in homeostasis and disease. Despite concerted efforts, several aspects of macrophage origin, biology, and functionality remain poorly understood. To gain a deeper understanding of these cells, a physiologically relevant, but practical model is required. In vitro, macrophages are principally generated from primary monocytes and monocyte-like cell lines through a natural process referred to as monocyte-to-macrophage differentiation. Monocyte-like cell lines have several practical advantages over the use of primary monocytes with the most commonly employed monocyte-like cell lines being THP-1 and U937 cells. Despite their frequent use, no standardised protocol is employed in the differentiation of monocyte-like cell lines to macrophages. Naturally, this results in large discrepancies and a lack of comparability between studies. Furthermore, many of these protocols are not physiologically relevant and produce macrophages that are not responsive to downstream stimuli. 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the biologically active form of vitamin D3, is a recognised immunomodulator that shows pronounced genomic and non-genomic effects in immune cells. It is also reported as an inducer of monocyte-to-macrophage differentiation, though heavily debated, and a potential macrophage polarisation agent. Despite this, there is relatively little information concerning the role of 1,25(OH)2D3 in monocyte-to-macrophage differentiation and macrophage biology. This study aimed to develop a more physiologically relevant differentiation protocol for the monocyte-like THP-1 and U937 cell lines. This model was then used to investigate the role of 1,25(OH)2D3 in monocyte-to-macrophage differentiation and macrophage biology. Assessment of morphological features and the macrophage markers, CD11b and CD14, indicated that in both THP-1 and U937 cells, differentiation induced using a combination of 5 nM of phorbol 12-myristate 13-acetate (PMA) and 10 nM 1,25(OH)2D3 over 96 hours produced the most mature macrophages. It was observed that 1,25(OH)2D3 alone was not capable of inducing differentiation, yet when combined with PMA, greatly enhanced macrophage features. THP-1 cells are the most widely employed monocyte-like cell line, and are proposed to be the most reflective of primary monocytes. In this study these cells were shown to be more responsive to the effects of 1,25(OH)2D3 than their U937 counterparts. As such, RNA-sequencing was used to explore the efficacy of the proposed differentiation protocols and the influence of 1,25(OH)2D3 on macrophage biology in THP-1 cells. Differential gene expression analysis confirmed that the most effective differentiation protocol was the combination of 5 nM PMA with 10 nM 1,25(OH)2D3 when considering macrophage associated features including transcription factor usage, adhesion, phagocytosis, and cytokine and cytokine receptor expression. This protocol also produced THP-1-derived macrophages that showed increased expression of genes considered to be primary macrophage markers. These results also suggested that THP-1 cells differentiated with neither PMA nor PMA with 1,25(OH)2D3 were likely to represent fully polarised macrophages. 1,25(OH)2D3 treatment of THP-1 monocytes and THP-1-derived macrophages produced distinct gene expression profiles with considerably less overlap than expected. Though 1,25(OH)2D3 treatment often affected similar biological processes in both cell types, the genes within these processes found to be differentially expressed in each cell line were often distinct. For example, in THP-1- derived macrophages, but not THP-1 monocytes, 1,25(OH)2D3 treatment resulted in the increased expression of genes encoding numerous antibacterial peptides, several small GTPases and their regulators. Additionally, several type I interferon response related proteins showed decreased expression, while expression of cytokines and cytokine receptors was variable. This, taken together with the morphological work, indicates two potential roles for 1,25(OH)2D3 in macrophages. Firstly, a protective role as it suggests the potential to prime an antibacterial response, while still balancing inflammatory responses and protecting against autoinflammation induced by aberrant type I interferon response. Secondly, a potential role in determining the morphological features, clearly demonstrated through microscopy, and further suggested by the differential expression of a variety of small GTPases and their regulators.Item Elucidating the Structure-Function Relationships of Enterococcus faecium Nicotinate-Nucleotide Adenylyltransferase through X-Ray Crystallography, Computational Modelling and Binding Studies(University of the Witwatersrand, Johannesburg, 2024) Jeje, Olamide Adetomi; Pandian, Ramesh; Achilonu, Ikechukwu A.Nicotinate nucleotide adenylyltransferase (NNAT) is a vital enzyme at the heart of NAD biosynthesis, catalysing a crucial reaction that leads to the formation of pyridine dinucleotides. NAD+ is an essential coenzyme in numerous metabolic processes, DNA repair, and cellular signalling. Given its pivotal role, NNAT has emerged as a compelling drug target, particularly for its potential to disrupt the survival mechanisms of bacterial pathogens. By inhibiting NNAT, it is possible to undermine the metabolic integrity of these pathogens, making NNAT a promising focal point in the fight against bacterial infections and antibiotic resistance. However, understanding the structure-function relationship of Enterococcus faecium NNAT (EfNNAT) has remained elusive. Hence, this study aimed to address this gap bycharacterising EfNNAT and validating its potential as a druggable target. EfNNAT was overexpressed and purified using the Escherichia coli system and IMAC purification technique. Subsequently, biophysical characterisation was performed, followed by the determination of the three-dimensional structure in both apo and liganded forms using X-ray crystallography. High-throughput virtual screening, along with SP and XP docking, was conducted using a library of synthesizable flavonoids. Molecular dynamic simulation and fluorescence studies were employed to establish and validate the binding of identified inhibitors to EfNNAT. Successful expression and purification of EfNNAT yielded approximately 101 mg per 7.8 g of wet E. coli cells, with a purity exceeding 98%. High-resolution crystal structures of EfNNAT in native, adenine-bound, and NMN-bound forms were determined at 1.90 Å, 1.82 Å, and 1.84 Å, respectively. These structures provided insights into EfNNAT's substrate preference and revealed a potential allosteric site at the dimer interface of the NMN-bound structure. Virtual screening identified quercetin 3-O-beta-D-glucose- 7-O-beta-D-gentiobioside as the only potential inhibitor from the flavonoid library used. A 500 ns atomistic molecular dynamics simulation showed the compound interacted through hydrogen bonding and water bridges, albeit unstable within the receptor. ANS and mant-ATP fluorescence spectroscopy confirmed quercetin binding, while thermal shift assay revealed minimal impact of the inhibitor on the protein stability and structure. This study establishes a pipeline from expression and purification to structure solution and potential inhibitor identification for EfNNAT, validating its druggability. The mechanistic insights offer a foundation for advancing drug discovery efforts targeting EfNNAT and other bacterial NNAT enzymes.