School of Physics (Journal Articles)
Permanent URI for this collectionhttps://hdl.handle.net/10539/38042
Browse
3 results
Search Results
Item A tunable Josephson platform to explore many-body quantum optics in circuit-QED(Nature Research, 2019-02) Snyman, Izak; Martínez, Javier Puertas; Léger, Sébastien; Gheeraert, Nicolas; Dassonneville, Rémy; Planat, Luca; Foroughi, Farshad; Krupko, Yuriy; Buisson, Olivier; Naud, Cécile; Hasch-Guichard, Wiebke; Florens, Serge; Roch, NicolasThe interaction between light and matter remains a central topic in modern physics despite decades of intensive research. Coupling an isolated emitter to a single mode of the electromagnetic field is now routinely achieved in the laboratory, and standard quantum optics provides a complete toolbox for describing such a setup. Current efforts aim to go further and explore the coherent dynamics of systems containing an emitter coupled to several electromagnetic degrees of freedom. Recently, ultrastrong coupling to a transmission line has been achieved where the emitter resonance broadens to a significant fraction of its frequency, and hybridizes with a continuum of electromagnetic (EM) modes. In this work we gain significantly improved control over this regime. We do so by combining the simplicity and robustness of a transmon qubit and a bespoke EM environment with a high density of discrete modes, hosted inside a superconducting metamaterial. This produces a unique device in which the hybridisation between the qubit and many modes (up to ten in the current device) of its environment can be monitored directly. Moreover the frequency and broadening of the qubit resonance can be tuned independently of each other in situ. We experimentally demonstrate that our device combines this tunability with ultrastrong coupling and a qubit nonlinearity comparable to the other relevant energy scales in the system. We also develop a quantitative theoretical description that does not contain any phenomenological parameters and that accurately takes into account vacuum fluctuations of our large scale quantum circuit in the regime of ultrastrong coupling and intermediate non-linearity. The demonstration of this new platform combined with a quantitative modelling brings closer the prospect of experimentally studying many-body effects in quantum optics. A limitation of the current device is the intermediate nonlinearity of the qubit. Pushing it further will induce fully developed many-body effects, such as a giant Lamb shift or nonclassical states of multimode optical fields. Observing such effects would establish interesting links between quantum optics and the physics of quantum impuritiesItem Spin-3/2 dark matter in a simple t-channel model(Springer Open, 2018-11) Khojali, Mohammed Omer; Kumar, Mukesh; Cornell, Alan S.; Goyal, AshokWe consider a spin-3/2 fermionic dark matter (DM) particle interacting with the Standard Model quarks through the exchange of a charged and coloured scalar or vector mediator in a simple t-channel model. It is found that for the vector mediator case, almost the entire parameter space allowed by the observed relic density is already ruled out by the direct detection LUX data. No such bounds exist on the interaction mediated by scalar particles. Monojet + missing energy searches at the Large Hadron Collider provide the most stringent bounds on the parameters of the model for this case. The collider bounds put a lower limit on the allowed DM masses.Item Large N bilocals at the infrared fixed point of the three dimensional O(N) invariant vector theory with a quartic interaction(Springer, 2018-11) Mulokwe, Mbavhalelo; Rodrigues, Jo˜ao P.We study the three dimensional O(N) invariant bosonic vector model with a λN(φaφa)2 interaction at its infrared fixed point, using a bilocal field approach and in an 1/N expansion. We identify a (negative energy squared) bound state in its spectrum about the large N conformal background. At the critical point this is identified with the ∆ = 2 state. We further demonstrate that at the critical point the ∆ = 1 state disappears from the spectrum.