School of Physics (Journal Articles)

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 1 of 1
  • Item
    Entanglement beating in free space through spin–orbit coupling
    (Springer Nature, 2018) Rosales-Guzmán, Carmelo; Denz, Cornelia; Otte, Eileen; Ndagano, Bienvenu; Forbes, Andrew
    It is well known that the entanglement of a quantum state is invariant under local unitary transformations. This rule dictates, for example, that the entanglement of internal degrees of freedom of a photon remains invariant during free-space propagation. Here, we outline a scenario in which this paradigm does not hold. Using local Bell states engineered from classical vector vortex beams with non-separable degrees of freedom, the so-called classically entangled states, we demonstrate that the entanglement evolves during propagation, oscillating between maximally entangled (purely vector) and product states (purely scalar). We outline the spin–orbit interaction behind these novel propagation dynamics and confirm the results experimentally, demonstrating spin–orbit coupling in paraxial beams. This demonstration highlights a hitherto unnoticed property of classical entanglement and simultaneously offers a device for the on-demand delivery of vector states to targets, for example, for dynamic laser materials processing, switchable resolution within stimulated emission depletion (STED) systems, and a tractor beam for entanglement.