Electronic Theses and Dissertations (PhDs)

Permanent URI for this collectionhttps://hdl.handle.net/10539/38021

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Optimization of Prostate Plan in a Pelvic Prosthesis Phantom
    (University of the Witwatersrand, Johannesburg, 2024-09) Dumela, Khombo Eunice; Oderinde, Oluwaseyi M.; Usman, IyaboT.
    Background: An increasing number of elderly prostate cancer patients with high-density material hip prosthesis are referred for external beam Radiotherapy (EBRT). Radiation treatment of pelvis cancer patients with high-density hip prosthesis needs special attention because of the artifacts created in the computed tomography (CT) field of view and the radiotherapy dosimetry challenges. The accuracy of the treatment planning dose calculation algorithms determines the accuracy of the dose delivered to the patient during radiation therapy. However, the most available algorithms do not accurately model the absorption of high-density metals’ scattering properties and underestimate the resulting dose perturbations. Aim: This study aims to optimize the dose distribution of prostate 3D conformal treatment, intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) in an in-house metallic hip prosthesis phantom. Methods and materials: In this study, an ionization chamber and Gafchromic (EBT3) films were used to physically measure the prostate point dose in an in-house pelvic phantom. The pelvic phantom was irradiated on the Linac with four static fields, namely, (1) anterior field, (2) posterior field, (3) right lateral field passing through the bone of the normal hip and (4) left lateral passing through the hip prosthesis. IMRT and VMATs plans were also generated on the phantom. The phantom was also irradiated with IMRT and VMATs plan. The use of single arc versus two arcs with avoidance sector were also evaluated. The phantom consists of different materials; Nylon-12 (a solid water-equivalent material) to simulate the prostate with a central cavity to accommodate an ionization chamber and film, superflab gel bolus to simulate human soft tissue, dental wax to simulate human soft tissue, bone anatomy for the right hip and a titanium implant to replace the bony structure of the left hip. For the static fields, an in-house pelvic phantom was simulated using the EGSnrc Monte Carlo code, and 6 and 15 MV photon energies were employed as in an experimental setting. The prostate point doses computed by the Treatment Planning System (TPS), measured using ionisation chamber, and Gafchromic EBT3 film were compared with the prostate point doses simulated by Monte Carlo code. Results and discussion: The novel phantom was constructed using superflab gel bolus, Nylon-12, dental wax, pig bone insert and a titanium alloy hip replacement. The radiological equivalence of the superflab gel bolus and dental wax was determined employing linear attenuation coefficients and then compared to an RW3 Solid water phantom. EGSnrc Monte Carlo (MC) code was used in this study. Before using Monte Carlo codes, they need to be validated by comparing the Linear accelerator Monte Carlo simulated dose distribution with the experimental data measured in a Linear accelerator using water and ionization chamber for 6 MV and 15 MV photon beams of different field sizes. The EGSnrc dose distributions were compared with the experimental measurements using a gamma analysis, employing a 2 %/2 mm distance-to-agreement criterion. The EGSnrc Monte Carlo calculated dose distribution agreed well with experimental measurements within 2 %. The MC beam model was then used to compute the dose distribution in an in-house pelvic phantom. The comparison of the measurements between the TPS calculated prostate point dose and ionization chamber for the 6 MV and 15 MV photon beams was: anterior (gantry 0°) 1.8 % and -0.5 %; posterior (gantry 180°) 1.7 % and -0.2 %; left lateral (gantry 90°) 6.3% and 4.2 %; right lateral (gantry 270°) -2.2 % and -2.1 % respectively. Results obtained for Gafchromic EBT3 film measured doses were: anterior 2.3 % and 1.3 %; posterior -0.9 % and 0.2 %, left lateral 4.5 % and 3.5 %; right lateral -2.1 % and -2.5%, for the 6 MV and 15 MV photon beams, respectively. Consequently, results obtained for comparison of TPS, ion chamber and Film with MC simulated doses were: anterior 3.9 %, -2.1 and -1.6% %; posterior 1.8 %, -0.1% and -2.7 %; left lateral -0.2 %, 6.5 % and 4.7 %; right lateral 0.4 %, -2.6% and -2.5 %, for the 6 MV photon beam. And for 15 MV photon beam the results were: anterior 1.9 %, -3.8 and -0.6%; posterior 2.0 %, -2.3 % and -2.2 %; left lateral 0.5 %, 3.7 % and 2.9 %; right lateral 0.4 %, -2.4 % and -2.9 %. Monte Carlo simulations and film measurements have a statistically significant difference of p<0.001, with the film measurements having a higher value than MC simulations except on the left lateral field. Monte Carlo simulations and ionization chamber measurements also show a significant difference of p<0.001, with the ionization chamber having a higher value than the MC simulation, except for the left lateral field passing through the hip prosthesis. The comparison of the measurements between the TPS calculated prostate point dose with ionization chamber and Gafchromic EBT3 film for the 6 MV IMRT plan of the beam passing through the prosthesis was 2.2 % and 3.3%, respectively. While the IMRT plan with avoided beam was 1.9 % and 3.1% for ionization chamber and Gafchromic EBT3 film, respectively. The comparison of the measurements between the TPS calculated prostate point dose for the 6 MV VMAT plan without avoiding for the beam passing through the prosthesis was 1.1 % and 2.2 % for ionization chamber and Gafchromic EBT3 film, respectively. While for VMAT plan with avoided sector as 3.0 % and 4.0% for ionization chamber and Gafchromic EBT3 film, respectively. The test suggested a significant difference of p=0.0001 between the distribution of film measurements and TPS calculated dose. Meanwhile, for ionization chamber measurements and TPS calculated dose; the test indicated a significant difference between ion chamber measurements and TPS calculated dose with a significant level of less than 0.001. in addition, MC simulated dose and TPS calculated dose; the test shows a percentage difference of -0.2 % and 0.5 % for 6 MV and 15 MV photon beams in the lateral field that passes through the prosthesis. The test indicated the significant difference of p=0.001 which is slightly lower compared to the other comparisons. Conclusion: The dual dosimetric pelvic prosthesis phantom is easy to assembly and is more convenient for second dose check for patients with hip prostheses. Through the use of the pelvic phantom, it was possible to measure the prostate point dose using ionization chamber and films. The TPS overestimated the prostate point dose because the treatment planning algorithm could not accurately determine the CT number and the electron density of the prosthesis due to the limitation on the CT scanner. The maximum deviation calculated in this study for TPS, ionization chamber Gafchromic EBT3 films when compared to Monte Carlo simulated dose comes from the lateral fields passing through the prosthesis for both 6 MV and 15 MV photon beams.
  • Item
    Low-temperature electronic transport of metal doped carbon nanotube molecular hybrids and Nitrogen-doped nanocrystalline diamond
    (University of the Witwatersrand, Johannesburg, 2024-08) Sodisetti, Venkateswara Rao; Bhattacharyya, Somnath
    This thesis explores the magnetism and spin-related properties in carbon-based molecular hybrid materials, with a focus on expanding our understanding of low-dimensional carbon structures and their potential electronic applications. The investigation spans from one-dimensional systems, such as carbon nanotubes (CNTs) functionalized with single-molecule magnets (SMMs), to three-dimensional systems like nitrogen-doped ultra nanocrystalline diamond (UNCD). In these carbon structures, electronic transport is intricately tied to microstructural features, such as grain boundaries and impurity clusters, which hold significant potential for the development of all-carbon electronic devices. The research begins with a detailed examination of the chemical functionalization of multi-walled carbon nanotubes (MWCNTs) through controlled acid treatment to achieve precise metal doping. Using Raman spectroscopy and complementary techniques like ICP-MS and ToF-SIMS, we successfully demonstrate how functionalization levels influence the magnetic properties of CNT hybrids loaded with magnetic metals from the lanthanide series (Gd, Tb, Dy). The study reveals that low percentages of metal doping (0.5% to 1.0%) preserve the magnetic bistability of SMMs post-grafting, while higher doping levels lead to complex magnetic behaviors including super paramagnetism, quasi-ferromagnetism, and potential Kondo lattice behavior inCNT-heavy metal systems. We also explore the spin-phonon coupling in Gd-filled double-walled CNTs, where the onset of superparamagnetic properties at low temperatures is coupled with phonon mode stiffening observed via Raman spectroscopy. This enhanced coupling offers promising pathways for developing efficient molecular qubits through the modulation of spin-phonon interactions in one-dimensional systems. The second part of the thesis investigates into the microwave plasma-assisted chemical vapor deposition (MWCVD) growth of nitrogen-doped nanocrystalline diamond (NCD) thin films on different substrates. By pioneering upgrades to the MWCVD system, I was able to achieve reliable growth of high-quality nanocrystalline diamond thin films. Notably, I observed a novel nanostructure, termed Diaphite-a previously unreported feature, in these NCD films, consisting of nanodiamond grains coherently linked with graphene-like rings. This structure, along with the non-equilibrium growth conditions induced by nitrogen doping and secondary nucleation, presents unique polymorphic features in artificially grown diamonds. Detailed low-temperature transport measurements on four different samples—ranging from 7.5% to 20% nitrogen doping—uncovered complex transport phenomena such as 3D weak localization (WL), variable-range hopping (VRH), and unusual magnetoresistance (MR) behavior. In particular, the 7.5% N2-doped UNCD film on quartz exhibited 3D weak localization (WL) at low fields and anti-weak localization (AWL) at higher fields, with distinct magnetoresistance characteristics depending on the direction of the applied magnetic field. The 20% N2-doped films on both quartz and silicon showed more metallic-like behavior, with magneto-resistance characterized by a B1/2 dependence at low temperatures, suggesting an intricate relationship between doping level, microstructure, and electron transport. These findings significantly expand our understanding of the role that microstructural and chemical modifications play in determining the electronic and magnetic properties of carbon-based materials. This work provides a foundational platform for future research into carbon electronics, offering potential breakthroughs in spintronics, molecular transistors, quantum computing, and other advanced electronic applications.
  • Thumbnail Image
    Item
    Digital toolbox for the generation and detection of vectorial structured light
    (University of the Witwatersrand, Johannesburg, 2023-06) Singh, Keshaan; Dudley, Angela; Forbes, Andrew
    Light has been an invaluable tool in the development of the modern world, with the myriad of applications increasing along with our degree of control over it. From the development of coherent light sources, to the shaping of amplitude and phase, this development has not ceased for the past half century. The field of structured light, borne out of the necessity and desire for control over light, has been growing steadily in recent years. In the spatial domain, the control over light’s polarization (i.e., the local planes in which the electric and magnetic fields oscillate) has been the most recent avenue of improvement, providing enhancements to a variety of applications ranging form microscopy and communication to materials processing and metrology. This class of light, commonly referred to as vectorial light, often requires specialised equipment in order for its its creation before its numerous benefits can be exploited. These tools often incur high costs and suffer from limitations relating to the diversity of vectorial light they can create, wavelength dependence and slow refresh rates. This thesis follows the development of a series of digital tools for the versatile generation and analysis of vectorial light using low-cost core technologies which can operate at high rates over a broad wavelength range. We follow the development of the generation tool in the context of its application in generating novel accelerating polarization structures, emulating vectorially apertured optics, generating probes to measure birefringence and chirality and creating synthetic spin dynamics. The development of the analysis tool is explored by investigating its application in performing automated digital Stokes polarimetry measurements, completely characterizing the internal degrees of freedom of arbitrary vectorial light and acting as a polarization and wavelength independent wavefront sensor. We then demonstrate how these tools can be used, in conjunction, to investigate the fundamental invariance of vectorial light to perturbing channels and how this invariance can be exploited in a highly robust novel communication scheme. In addition to demonstrating the applicability and versatility of these vectorial light tools, the applications offered a means to highlight areas for the optimization for the design. This culminated in the ongoing prototyping of versatile, fast, broadband devices which operate stably and have a small physical footprint.
  • Thumbnail Image
    Item
    The Large N Limit of Heavy Operator Excitations
    (University of the Witwatersrand, Johannesburg, 2023-07) Carlson, Warren Anthony; De Mello Koch, Robert
    Operators with bare dimension of order N are studied. These are restricted Schur polynomials labeled by Young diagrams with two long rows or two long columns and are heavy operators in the large N limit. A dramatic simplification of the action of the dilatation operator on these states is found, where the diagonalization of the dilatation operator reduces to solving three-term recursion relations. The solutions to these recursion relations reduce the spectrum of the dilatation operator to that of decoupled harmonic oscillators, showing that these systems are integrable at large N. Then, generating functions for bound states of two giant gravitons are constructed and an extension to more than two giant gravitons is sketched. These generating functions are integrals over auxiliary variables that encode the symmetrization and anti-symmetrization of the fields in the restricted Schur polynomials and give a simple construction of eigenfunctions of the dilatation operator. These generating functions are shown to be eigenfunctions of the dilatation operator in the large N limit. As a byproduct, this construction gives a natural starting point for systematic 1/N expansions of these operators. This includes the prospect to generate asymptotic representations of the symmetric group and its characters via the restricted Schur polynomials. Finally, the asymptotic expansion of the three-point function is computed in three BMN limits by varying one parameter in the large N limit. It is argued that these asymptotic expansions encode non-perturbative effects and are related by a parametric Stokes phenomenon.