Electronic Theses and Dissertations (PhDs)

Permanent URI for this collectionhttps://hdl.handle.net/10539/38002

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Preparation of nitrogen-doped multiwalled carbon nanotubes anchored 2D platinum dichalcogenides for application as hydrogen evolution reaction catalysts
    (University of the Witwatersrand, Johannesburg, 2024-09) Mxakaza, Lineo Florence; Moloto, Nosipho; Tetana, Zikhona
    The alkaline hydrogen evolution reaction (HER) (H2O + 2e − → H2 + 2OH−) is fast gaining traction as a sustainable hydrogen gas generation route but suffers from slow reaction kinetics because of the additional water dissociation step and large reaction overpotential. As such, the current state-of-the-art acidic medium Pt and Ru catalysts suffer from considerable loss of catalytic activity in an alkaline medium. We propose the development and use of platinum metal dichalcogenides for alkaline HER. Platinum dichalcogenides are 2D materials that offer the advantage of more exposed catalytic sites, show dramatic chalcogen-dependent electronic properties, and have a band gap (0.24 eV - 1.8 eV for PtS2 and PtSe2) thus extending the use of these materials to light-stimulated photo-electrochemical (PEC) HER. As such, PtS2 is reported to be a semiconductor, PtSe2 is semi-conductive/semi-metallic depending on the number of layers, and PtTe2 is metallic. The Pt-chalcogen covalent bond intensifies down the chalcogen group. Additionally, the interlayer interactions in Pt dichalcogenides are covalent, and just like the Pt-chalcogen bond, intensify as the chalcogen atom changes from sulphur to selenium to tellurium. This behaviour of Pt dichalcogenides results from the Pt bonding d orbitals and the chalcogen bonding p orbitals that are relatively close in energy than in other TMDs, and the difference in the energy becomes smaller and smaller down the chalcogen group. Herein, we report on the synthesis of PtSe2 and PtTe2 using the colloidal synthesis method for the first time and then applying them as electrocatalysts in alkaline HER. As mentioned, developing 2D materials results in band gap development, particularly in PtS2 and PtSe2. Following this, PtSe2 was explored as a photocathode in light-induced photo-electrochemical HER. Generally, semiconductors are poor electron transporters and one of the major requirements for an efficient PEC cathode is solar absorption, charge generation, and efficient charge separation. The charge separation properties of PtSe2 were improved by supporting this material on highly conductive, mechanically, and thermally stable nitrogen-doped multi-walled carbon nanotubes (N-MWCNTs). In Chapter 3, we report on the effect of varying selenium precursors from elemental selenium, sodium selenite to selenourea on the colloidal synthesis of PtSe2 in a mixture of oleylamine and oleic acid at 320 ℃. All the reactions resulted in the formation of PtSe2 although PtSe2 prepared from selenourea is amorphous, evidenced by relatively broader XRD peaks and a smaller crystallite size. HER activity of the three PtSe2 catalysts was evaluated in 1 M KOH at a scan rate of 5 mV/s and PtSe2 prepared from selenium exhibited the earliest onset potential of 46 mV, overpotential of 162 mV, and a smaller Tafel slope of 112 mVdec-1. This material exhibits the smallest resistance to electron transport and a high electrochemical surface area. We then explored the effect of altering tellurium precursor from elemental tellurium to tellurium tetrachloride, and sodium tellurite. Unlike the PtSe2 synthesis, different platinum tellurite phases, PtTe2, PtTe, and the mixed phase PtTe: PtTe2 were produced from Te, PtCl4, and sodium tellurite, respectively. Of the three, PtTe2 exhibited the highest alkaline HER activity with an onset potential of 29 mV, an overpotential of 107 mV, and a Tafel slope of 79 mVdec-1. In the same chapter, we compared the catalytic activity of PtSe2 (prepared from Se) and PtTe2 (prepared from Te) catalysts. We determined that PtTe2 has a high surface roughness and electrochemical surface, leading to relatively higher activity than PtSe2. However, PtTe2 is metallic and therefore does not have a band gap, which implies that it cannot be employed in light-stimulated catalysis reactions. In Chapter 4, we explored the use of PtSe2 as a light-stimulated PEC alkaline HER catalyst. We used in situ colloidal synthesis to grow PtSe2 on the walls of N-MWCNTs to improve the overall electron transport properties of PtSe2. PtSe2 anchored on N-MWCNTs was also studied in the dark and under illumination using 1 sun (100 mW/cm2) to determine the influence of light on the HER catalytic activity of the hybrid materials. This study demonstrates that the light-stimulated HER activity of PtSe2 improves when minimal amounts of N-MWCNTs are incorporated in the PtSe2 sample matrix. This then leads to employing these materials as photocathodes in PEC HER.
  • Thumbnail Image
    Item
    Microwave-assisted synthesis of palladium-based ferroalloy electrocatalysts for application in alkaline direct alcohol fuel cells
    (University of the Witwatersrand, Johannesburg, 2024-11) Ramashala, Kanyane Nonhlanhla Eugenia; Billing, Caren; Modibedi, R. Mmalewane; Ozoemena, Kenneth Ikechukwu
    This research work describes the study of Pd-based ferro-electrocatalysts for application towards direct ethanol fuel cells (DEFCs), direct ethylene glycol fuel cells (DEGFCs), direct glycerol fuel cells (DGFCs) and oxygen reduction reaction (ORR) operated in a basic environment. The initial part of the research was to explore the Pd-based monometallic and bimetallic (Pd/C and PdFe/C) by utilising varied methods such as the conventional sodium borohydride (NaBH4) and microwave-assisted technique (MW) towards the oxidation of glycerol (gly), intending to choose the best method viable for these catalysts. This study revealed that MW techniques tuned the physicochemical properties of Pd/C and PdFe/C by augmenting their crystallinity and defect. These led to improved electrocatalytic activities towards glycerol oxidation reaction (GOR) over NaBH4 technique. MW process as a powerful tool was further used in the entire study to synthesise bimetallic and trimetallic electrocatalysts in ethanol (EtOH), ethylene glycol (EG) and glycerol (Gly) oxidation reaction in an alkaline environment. The synthesised bimetallic catalysts studied in this research work were (PdFe/C, PdCo/C, and PdMn/C) at varied ratios of Pd: M (Pd2M/C (2:1) and PdM/C (1:1)). Amongst them all, Pd2Fe/C and PdFe/C were observed to be the most favourable catalysts towards all the alcohols, with the excellent specific activity of about, for EtOH (11.59 and 4.15 mA cm-2), EG (9.82 and 5.51 mA cm-2) and Gly (8.94 and 4.73 mA cm-2), respectively. The satisfactory performance exhibited by the PdFe/C electrocatalyst prompted the exploration of the second 3d transition metal (PdFeMn/C and PdFeCo/C), intending to investigate the synergistic behaviour between the non-noble metals and Pd. The XRD confirmed that these electrocatalysts are in a crystalline nature with a decrease in d spacing (from 0.2247 nm, PdFe/C to 0.2236 nm (PdFeMn/C)) after the insertion of Mn into PdFe/C. This was supported by the TEM images obtained for the PdFeMn/C catalyst with a particle size of sub 10 nm. The comparison studies towards EtOH, EG and Gly were investigated for all the electrocatalysts and there was a remarkable observation, which is dissimilar from the theoretical studies (DFT). Density Functional Theory (DFT) revealed that PdFeCo performed better in terms of Gibbs free energy, binding energy, and energy band gap than PdFeMn; however, the experimental studies favoring the performance of PdFeMn. The PdFeMn/C delivered the best electrochemical activities, including a superior electrochemical active surface area (ECSA), larger current densities and mass activity response, and less susceptibility to poisoning and high conductivity as compared to PdFe/C and PdFeCo/C electrocatalysts. Furthermore, the PdFeMn/C electrocatalyst exhibited remarkable electrochemical properties during the ORR (basic medium). Ultimately, the best two anode electrocatalysts (PdFe/C & PdFeMn/C) were explored and tested for the proof-of-concept in the two-electrode configuration with the micro-3D printed cell. The PdFeMn/C delivered improved µ-ethylene glycol fuel cell, µ-glycerol fuel cell, and µ-ethanol fuel cell activities with respective to high voltage and power density of 33.27 mW cm-2, 11.00 mW cm-2 and 45,80 mW cm-2 respectively, operated at 100 mV / s. These electrocatalysts have demonstrated promising results in advancing ADAFCs.
  • Thumbnail Image
    Item
    Towards the development and determination of trace impurities in battery grade nickel sulphate
    (University of the Witwatersrand, Johannesburg, 2024-10) Mabowa, Mothepane Happy; Tshilongo, James; Chimuka, Luke
    This study introduces innovative research focused on developing and optimizing advanced extraction techniques for refining nickel hydroxide from secondary material solutions. This precursor to nickel sulfate is effectively purified through impurity removal and precise determination, enhancing the final product to battery grade standards. The research addresses the extraction of metal hydroxide from secondary sources such as spent batteries and industrial waste, promoting recycling and reducing environmental impact. By refining analytical methodologies and improving impurity control, this study advances the sustainable production of high quality nickel sulfate essential for advanced rechargeable batteries. The key challenge addressed in this study is the presence of impurities in secondary material solutions, which complicates the process of refining nickel hydroxide and hinders the production of high-purity nickel sulfate suitable for battery applications. Existing methods for recovering nickel from secondary materials are often inefficient, leading to high impurity levels, low recovery rates, and significant environmental impacts. Current methods such as solvent extraction and precipitation often fail to achieve the desired purity levels for nickel sulfate, necessary for use in high-performance battery manufacturing. Furthermore, these methods can be costly, resource-intensive, and environmentally damaging. Analytical methods used to measure impurities also have limitations. The complex and saturated matrix of battery-grade solutions challenges accurate impurity determination, often necessitating indirect methods such as difference analysis from nickel sulfate, which may not fully capture all impurity types or their concentrations. To resolve these issues the study focuses on optimizing advanced extraction techniques from these secondary sources. The research includes: (1) investigating the effectiveness of S-Curve precipitation by varying parameters such as pH levels, nickel concentration, precipitate dosage, temperature, impurity concentration, and solubility products; (2) evaluating solvent extraction for copper removal prior to nickel precipitation; (3) validating various analytical techniques (FAAS, EDXRF, ICP-OES) for trace element analysis; (4) examining lime precipitation for the removal of iron, manganese, and copper; and (5) characterizing β-nickel hydroxide (Ni(OH)₂) using scanning electron microscopy (SEM), X-ray diffraction (XRD) patterns, Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The research employed a combination of precipitation methods, solvent extraction, and advanced analytical techniques. The S-curve precipitation of nickel hydroxide was optimised by varying pH levels, nickel concentration, and temperature. The study also examined lime precipitation as a method for impurity removal and used solvent extraction for copper removal before nickel recovery. Various solvents with different ratios were utilized at room temperature for copper extraction, and the 1:5 ratio of 5,8-diethyl-7-hydroxydodecan-6-oxime (LIX 63-70) proved to be effective. Analytical tools like FAAS, EDXRF, and ICP-OES were employed to validate the concentration of trace impurities, and techniques such as SEM, FTIR, XRD, and XPS were used to characterize the crystalline structure and purity of β-Ni(OH)₂. The first part of the work entailed devising a technique to extract base metals, specifically nickel, from the waste stream resulting from the nickel sulphide-fire assay waste. This study explores the recovery of nickel (Ni) through a combination of solvent extraction and precipitation techniques. The main objective is to develop an efficient process for separating Ni from copper (Cu) and iron (Fe) impurities, thereby optimising metal recovery at varying pH, concentration with addition of calcium hydroxide at 60˚C and contributing to the circular economy. The approach involves using LIX 63-70 for solvent extraction, which effectively loads Cu into the organic phase and allows for Ni liberation into the aqueous phase. Characterization of the S-curve precipitation process was carried out using various analytical techniques. The precipitation of Ni(OH)₂ was optimised at pH 6.5, as evidenced by X-ray diffraction (XRD) patterns, Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The results show that Ni(OH)₂ precipitates in a crystalline β-phase, with XPS confirming the successful precipitation and minimal presence of Cu and Fe impurities at pH of 6.5 at 60˚C. Notably, the study also identifies the presence of Fe and Ca impurities at pH 2.5, as indicated by scanning electron microscopy (SEM), energy-dispersive X ray spectroscopy (EDX), and XRD analyses. The study addresses a critical research gap by providing a detailed assessment of the separation process for Ni from complex waste streams. It demonstrates the efficacy of 5,8-diethyl-7-hydroxydodecan-6-oxime (LIX 63-70) in selectively extracting Cu and reveals the influence of pH on the purity of Ni(OH)₂ precipitates. The process also involves significant lime consumption for neutralising the feed solution, with about 71% used to adjust the solution to pH 2.0, highlighting the importance of optimising reagent usage. The research presents a successful method for recovering Ni from fire assay waste in separating value-added metals from impurities. The findings contribute to advancements in metal recycling and repurposing, supporting the development of sustainable waste management practices and the promotion of a circular economy. Paper II evaluates the accuracy and reliability of elemental analysis in synthetic cathode liquor using Energy Dispersive X-ray Fluorescence (EDXRF) and Flame Atomic Absorption Spectroscopy (FAAS) with both factory default settings and after internal calibration and compares these results with those obtained from Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The research aims to test the performance of EDXRF and FAAS for identifying and quantifying elements such as calcium (Ca), sodium (Na), cobalt (Co), iron (Fe), nickel (Ni), copper (Cu), arsenic (As), selenium (Se), antimony (Sb), and bismuth (Bi). The investigations into the impact of these parameters on the variations in absorbance for the targeted impurities guarantee satisfactory linearity and recovery. The recovery was quantified by comparing the concentration of elements in spiking samples and certified reference materials (CRMs) to known quantities, while the sensitivity of each method was assessed by the limits of detection (LOD). Linearity was assessed by constructing calibration curves at a variety of concentrations and calculating the coefficient of determination (R²) to guarantee precise results at varying concentration levels. Initial EDXRF results using default settings showed substantial inconsistencies, particularly with Ca, where measured values invariably showed 0 mg/L despite actual concentrations ranging from 0 to 0.15 mg/L, and Ni, where measured concentrations varied between 493,327 and 529,280 mg/L compared to the true value of 120,000 mg/L. After calibration, EDXRF displayed better accuracy for Co, Fe, and Cu but experienced limits with light elements like Se and Sb due to high LOD. FAAS demonstrated effective results for Co, Cu, Fe, and Mg but encountered limits, particularly in detecting low amounts of metals like Na. FAAS readings for Na demonstrated high variability with a standard deviation (SD) of 505.24 mg/L and a relative standard deviation (RSD) of 23.39%. Furthermore, differences in FAAS measurements for Ca, Fe, and Ni were seen, with fluctuations in standard deviation (SD) and relative standard deviation (RSD) suggesting a certain level of inconsistency. The ICP-OES results confirms the accuracy of FAAS by closely aligning with its measurements for elements such as Co and Ni. The precision of FAAS is further demonstrated by the low standard deviations (8.08 mg/L for Co and 4 mg/L for Ni) of ICP-OES results (e.g., Co: 990 mg/L, Ni: 126 mg/L). This validation underscores the dependability of FAAS to these components due to selection of FAAS for its cost-effectiveness and broad applicability in industrial analysis. Evaluation of numerous methods is crucial for a thorough evaluation of elemental analysis accuracy, as evidenced by the comparison with ICP-OES. In addition, it is crucial to distinguish between the discourse on analytical methods and recovery metrics, as recovery rates are more closely associated with preconcentration techniques than with the analytical methods themselves. This work aims to fill a significant research need by emphasising the need for internal calibration for EDXRF and the necessity of using several analytical methods in conjunction to obtain dependable results. It stresses the strengths and limits of each method, providing a complete approach to enhancing analytical accuracy in industrial applications. The study in Paper III investigates the characterisation and retrieval of β-Ni(OH)₂ from fire assay waste using chemical precipitation. Various analytical methods are used to confirm the successful synthesis and purity of the molecule. Nickel hydroxide (Ni(OH)₂) is a functionally diverse chemical with a broad spectrum of uses. A hexagonal crystalline structure of β-Ni(OH)₂ is confirmed by X-ray diffraction (XRD) analysis, therefore validating the successful precipitation procedure. Fourier-transform infrared spectroscopy (FTIR) spectra provide additional evidence for the presence of nickel hydroxide by displaying distinct peaks associated with υ(OH) and υ(NiO) bonds. The X-ray photoelectron spectroscopy (XPS) analysis reveals the significant Ni²⁺ oxidation peak, which confirms the successful precipitation at a pH of 6.5. Additionally, XPS analysis detects the presence of contaminants such as chlorine and calcium in the waste matrix. Scanning electron microscopy (SEM) shows layered granules with a predominantly transparent brucite analogue crystalline phase, typical of β-Ni(OH)₂. It also exposes rough textures and uneven aggregation, indicating increased oxide concentrations on the Ni surface. The presence of nickel (Ni) and oxygen (O), as well as calcium (Ca) impurities arising from the chemical precipitation process, is confirmed by energy-dispersive X-ray spectroscopy (EDX). An investigation of particle size distribution indicates an average particle size of 2.0 µm. The results of Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) indicate a reduction in Ni concentrations, with recorded values of 62.7 g/L in the pregnant leach solution, 0.8 g/L in the precursor solution, and 0.501 g/L in the solid precipitate (cake). The copper loading efficiency is measured to be 79%, accompanied by a nickel loss of 9.73% and a nickel recovery rate of around 90.27%. This effective separation process demonstrates a cost-efficient and environmentally responsible method for recycling nickel from acidic chloride media, underlining the broader potential for nickel reuse in industrial processes. This study conducts a comparative analysis of nickel oxide (NiO) that is derived from fire assay nickel sulphide (FA-NiS) and produced through chemical precipitation and sol-gel methods. The focus is on the structural, morphological, and sensing properties of the NiO. This research is significant in that it is the first to report on the application of NiO synthesised from waste materials for volatile organic compound (VOC) sensing. The primary goal is to clarify the distinctions in properties between NiO obtained through these methods and evaluate their suitability for environmental sensing applications. Nickel was initially extracted from the raffinate using 5,8-diethyl-7-hydroxydodecan-6-oxime. Subsequently, nickel hydroxide (Ni(OH)₂) was precipitated with lime (Ca(OH)₂) at pH levels of 2.5 and 6.5. The hydroxide was subsequently transformed into NiO through a thermal treatment process. The presence of nickel and oxygen at pH 6.5, as well as iron, nickel, and oxygen at pH 2.5, was verified through the use of scanning electron microscopy (SEM)-energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). In both the sol-gel and chemical precipitation procedures, the X-ray diffraction (XRD) analysis demonstrated a cubic crystal structure with high average crystal sizes of 39-41 nm. The sol-gel process resulted in homogenous spherical particles, as evidenced by SEM imaging, whereas chemical precipitation resulted in aggregated layered grains. It is important to note that NiO precipitated at pH 2.5 exhibited coalesced hexagonal particles with a substantial amount of nickel and iron. The transition from nickel hydroxide to nickel oxide is essential because NiO is highly effective for VOC sensing due to its semiconductor properties. The study highlights the importance of utilising NiO in the detection of volatile organic compounds (VOCs) and the impact of each synthesis method on the material's sensory capabilities. Using certified reference materials, analytical methodologies, such as inductively coupled plasma optical emission spectrometry (ICP-OES) and X-ray fluorescence (XRF), demonstrated high-purity NiO (approximately 75%) with a low relative standard deviation (RSD <0.05%) and 90% recovery. The CRM AMIS 56 and SARM 33 were analysed alongside the samples to ensure reliable results were reproducible. Even at the lowest concentration of 1.5 ppm, NiO derived from fire assay waste demonstrated unambiguous sensing responses at 25˚C and 150˚C, with recovery times of 80 and 120 seconds, respectively. The potential of NiO from fire assay waste as an intriguing candidate for VOC sensing applications under ambient conditions was indicated by the highest response (Rg/Ra = 1.198 for 45 ppm ethanol) observed at 150˚C. The findings in paper IV highlight the suitability of nickel oxide synthesized from different methods for environmental sensing applications, particularly in volatile organic compounds detection. In Paper V, the focus is on the removal and characterization of impurities from pregnant nickel solutions at various pH levels, with an emphasis on enhancing nickel recovery and sustainable resource management. Lime is used as a precipitation agent to target impurities such as iron, lead, tin, manganese, and copper. The study employs inductively coupled plasma optical emission spectrometry (ICP-OES) to quantify and characterize these impurities. The objectives include improving analytical approaches for detecting trace contaminants, evaluating ICP-OES reliability for quality control, and assessing precipitation efficiency across different pH levels. Results reveal successful Fe3+ precipitation within the pH range of 2.0-3, alongside efficient manganese and copper precipitation at pH 5.5-6 and 4-6, respectively, aligning with established behaviours. The findings emphasise the significance of pH control for optimizing impurity removal from pregnant nickel solution, offering insights for enhancing nickel recovery processes in industrial settings. ICP-OES, supported by standard solutions and certified reference materials (CRMs), demonstrated exceptional linearity with correlation coefficients above 0.9995. The method showed high sensitivity, with detection limits and recoveries of CRM samples consistently within 10%. The study found that precipitation efficiency varies significantly with pH. Nickel (Ni) exhibited reduced precipitation at pH 2.02, with substantial precipitation occurring only at pH 6.5. Manganese (Mn) began precipitating at pH 2, achieving a peak removal efficiency of 98% at pH 6. Copper (Cu) precipitation started at pH 4, with a maximum efficiency of 99.3% between pH 4 and 6. Iron (Fe³⁺) was efficiently removed at pH 2.0-3.0. Significant variations in contaminant concentrations were observed, influenced by pH and precipitation agents. Fe³⁺ was removed with 100% efficiency at pH 2.5, while Cu precipitation was highly effective (99.3%) between pH 4 and 6. The decrease in Ni concentration at pH 2.02 was attributed to interactions with other metals rather than direct Ni precipitation. SEM revealed the morphology of the precipitates, showing a cauliflower-like structure for Ni(OH)₂ at pH 6.5 and the EDX confirmed the elemental composition of the precipitates, including Fe, Cu, Ni, Sn, Si, Al, Cl, Ca, and hydroxyl groups (OH), highlighting the presence of impurities precipitated at pH 2.5. This research highlights the effectiveness of ICP OES and EDX in trace impurity analysis and provides insights into optimizing precipitation processes, contributing to better recycling strategies and quality control in nickel processing and battery-grade materials. The study found that β Ni(OH)₂ precipitated optimally at pH 6.5, with a recovery rate of approximately 90.27% and minimal copper (79% loading efficiency) and iron impurities. Lime precipitation effectively removed Fe³⁺ at pH 2.5 and Cu between pH 4 and 6, with high removal efficiencies. Analytical methods such as EDXRF and FAAS, when calibrated, provided accurate results for trace elements, though discrepancies were noted for certain elements. The advancements in extraction and purification techniques, coupled with improved analytical methods and the novel application of NiO in VOC sensing, contribute significantly to the field of nickel recovery and processing. This research supports sustainable recycling practices and enhances the practical utility of recovered nickel, advancing both industrial applications and waste management strategies. Overall, this thesis contributes to advancing the understanding of impurity removal processes in nickel recovery and underscores the importance of precise control and characterization techniques in industrial applications.
  • Thumbnail Image
    Item
    Dissolution of non-functionalized and functionalized nanomaterials in simulated biological and environmental fluids
    (University of the Witwatersrand, Johannesburg, 2023-06) Mbanga, Odwa; Gulumian, Mary; Cukrowska, Ewa
    The incorporation of nanoparticles in consumer products is exponentially high, however, research into their behaviour in biological and environmental surroundings is still very limited. In the present study, the static system and the continuous flow-through dissolution protocols were utilized to evaluate and elucidate the dissolution behaviour of gold, silver, and titanium dioxide nanoparticles. The behaviour of these particles was studied in a range of artificial physiological fluids and environmental media, to obtain a more precise comprehension of how they would react in the human body and the environment. The biodurability and persistence were estimated by calculating the dissolution kinetics of the nanoparticles in artificial physiological fluids and environmental media. The details of the current research are described as follows: An investigation into the dissolution of non-functionalized and functionalized gold nanoparticles was conducted as the first component of the research, examining the effect of surface functionalization on dissolution. The study determined the dissolution rates of functionalized and non-functionalized gold nanoparticles. Dissolution was observed to be significantly higher in acidic media than in alkaline media. The nanoparticle surface modification, particle aggregation, and chemical composition of the simulated fluid significantly affected the dissolution rate. It was concluded that gold nanoparticles are biodurable and have the potential to cause long-term health effect as well as high environmental persistency. This work has been published in the Journal of Nanoparticle Research and is presented in this thesis as Paper 1. Silver nanoparticles were also included in this study because they have many applications and industrial purposes. Therefore, their risk assessment was also of utmost importance. The results indicated that silver nanoparticle solubility was influenced by the alkalinity and acidity of artificial media. Low pH values and high ionic strength encouraged silver nanoparticle dissolution and accelerated the dissolution rate. The agglomeration state and reactivity of the particles changed upon exposure to simulated fluids, though their shape remained the same. The fast dissolution rates in most fluids indicated that the release of silver ions would cause short-term effects. This work has been published in Toxicology Reports and has been presented in this thesis as Paper 2. Although titanium dioxide nanoparticles are insoluble and undergo negligible dissolution, it was of utmost importance to investigate their behaviour in biological and environmental surroundings. This is as a result of the incorporation of these particles in everyday consumer products, in the nanosized range which raises concerns about their safety. Therefore, in Paper 3 presented in this thesis the dissolution kinetics of titanium dioxide nanoparticles in simulated body fluids representative of the lungs, stomach, blood plasma and media representing the aquatic ecosystem were investigated to anticipate how they behave in vivo. This work has been published in Toxicology In Vitro and presented in this thesis as Paper 3. The results indicated that titanium dioxide nanoparticles were very insoluble, and their dissolution was limited in all simulated fluids. Acidic media such as the synthetic stomach fluids were most successful in dissolving the particles, while alkaline media had lower dissolution. High ionic strength seawater also had a higher dissolution rate than freshwater. The dissolution rates of the particles were low, and their half-times were long. The results indicated that these particles could potentially cause health issues in the long term, as well as remain unchanged in the environment. This work has been published in Toxicology In Vitro and presented in this thesis as Paper 3. The last component of the research compared the dissolution kinetics of gold, silver and titanium dioxide nanoparticles through the use of the continuous flow-through system. The findings indicated that titanium dioxide nanoparticles were the most biodurable and persistent, followed by gold and silver nanoparticles. Therefore, it was suggested that product developers should use the OECD's guidelines for testing before releasing their product to the market to ensure its safety. This work has been published in Nanomaterials MDPI and presented in this thesis as Paper 4.