Research Outputs (Mining Engineering)
Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/21345
For information on accessing School of Mining Engineering Research Articles content please contact : Salome Potgieter by email : salome.potgieter@wits.ac.za or Tel : 011 717 1961
Browse
2 results
Search Results
Item Just-in-time development model for a sub-level caving underground mine in Zimbabwe.(The Southern African Institute of Mining and Metallurgy., 2003-04) Musingwini, C.; Minnitt, R.C.A.; Phuti, D.; Makwara, F.Traditionally, mineral reserves management at most underground mines in Zimbabwe focus on maintaining large mineral reserves so that the time between development and production is as long as possible. Historical data at Shabanie mine, a Zimbabwean sub-level caving underground mining operation, confirms this practice. However, the high cost of underground development means that the luxury of large buffer mineral reserves cannot be justified. Furthermore significant increases in the costs of production, exacerbated by the current unfavourable economic climate, make the wisdom of extending development workings well ahead of use questionable. Poor ground conditions at Shabanie mine, mean that some development ends have to be re-mined two or three times due to partial or complete closure between the time they are mined and the time they are utilized. In order to reduce the inordinately high support costs associated with closure of development ends a new 'Just-in-time' (JIT) approach that provides development ends as and when they are needed, has been adopted. Accordingly a model to determine an appropriate 'just-in-time' rate of development has been created. The JIT development model indicated that the mine could reduce development rates from 330 m/month in 2001, to 160 m/month in 2002 and achieve savings of about 50% on annual support costs, but still assure customers of a long-term product supply. The mine accepted the model in November 2001 and began implementing it in 2002. Results of the implementation will be reviewed in 2003.Item Technical operating flexibility in the analysis of mine layouts and schedules.(The Southern African Institute of Mining and Metallurgy., 2007-02) Musingwini, C.; Minnitt, R.C.A.; Woodhall, M.Often overlooked factor in the analysis of mine layouts and schedules is technical operating flexibility (or tactical flexibility), mainly due to its nebulous nature. By glossing over technical operating flexibility the resultant mine layouts and schedules may be suboptimal. The need to incorporate technical operating flexibility into the analysis and comparison of mine layouts and schedules is increasing in importance. The nature of technical operating flexibility is illustrated, previous work on valuing of operating flexibility reviewed, and a proposal made on how technical operating flexibility can be quantified for tabular reef mines by using a platinum reef deposit as a case study. Once technical operating flexibility has been quantified it becomes possible to explore its incorporation into the analysis of mine layouts and schedules and subsequent optimization processes. This paper is a revised version of a paper presented in the Proceedings of the Second International Platinum Conference, 'Platinum Surges Ahead' in 2006. The work described in this paper is part of a current PhD study at the University of the Witwatersrand.