School of Chemistry (Journal Articles)
Permanent URI for this collectionhttps://hdl.handle.net/10539/38029
Browse
Item Chemical analysis of low grade gold from mine tailings after size fractionation and acid digestion using reverse aqua regia(Nature Research, 2025-03) Chimuka, Luke; Tshilongo, James; Mashale, Kedibone Nicholine; Sehata, James; Ntsasa, Napo GodwillThe growing interest in reprocessing mine tailings for gold recovery requires a suitable quantification method that is accurate, rapid, and not harsh to the environment. Acid digestion is often used to determination of gold; however, it often faces the challenge of incomplete digestion due to the presence of minerals such as quartz, and homogeneity is compromised due to small sample masses, which can result in low bias. This study investigated a shorter acid digestion method employing reverse aqua regia, both in the presence and absence of hydrofluoric acid. Before digestion, the sample was subjected to gold depot analysis, which showed that 78% was free-milling gold and that only 0.8% was associated with pyrite, increasing the chances of accurate quantifications. Furthermore, the size screening test showed that most of the gold could be recovered on the −38 μm screen. This proposed method provided good linearity (5–100 µg. L−1) and low detection limits (0.139–0.183 µg.kg−1). The concentrations obtained by the acid digestion was 0.258 g.t−1 with the recoveries ranging between 80% and 82%, which fit the criteria set. The method also worked well for the certified reference materials (CRM), AMIS 610 (accurate value=0.068 g.t−1) and AMIS 646 (accurate value=0.166 g.t−1), which are of a similar matrix and are also lower in grade compared to the sample. The method was also evaluated for uncertainty (±value) using the bottom-up approach, and the expanded uncertainty (k=2) was reported to be 0.258±0.092 g.t−1, which was comparable to that offered by the fire assay with the ICP‒OES finish, which was 0.28±0.10 g.t−1. This implies that the acid digestion method is suitable for quantifying gold from mine tailings without large uncertainties.Item Developing a density functional theory model of glassy carbon via carbon defect induction and relaxation(Elsevier, 2025-01) Falch, A.; Meerholz, K.; van Sittert, C.G.C.E.Glassy Carbon (GC) is a non-graphitising carbon known for its thermal stability, conductivity, and resistance to chemical attack, making it valuable in industrial and scientific applications, especially as an electrode substrate in catalysis research. Despite its widespread use, GC’s precise structural characteristics is unclear due to synthesis variability. This study developed and validated a computational model to simulate GC’s structure. Starting from the R3-carbon allotrope, density functional theory calculations were used to construct a representative GC model, incorporating induced defects to mimic its structural imperfections. Multiple GC slab models were created for comparative analysis. Validation involved comparing theoretical X-ray diffraction data with published data, confirming the model’s accuracy in representing the GC’s structure. The model showed high correlation with existing models, particularly those by Jurkiewicz et al., emphasizing the effect of formation temperature on GC’s structural evolution. These findings enhance the understanding of GC’s structural complexities, providing a solid foundation for future research and applications in material science, especially for robust and conductive substrates used in electrocatalysis.Item Seasonal Pollution Levels and Heavy Metal Contamination in the Jukskei River, South Africa(MDPI, 2025-03) Mukwevho, Nehemiah; Ntsasa, Napo; Chimuka, Luke; Tshilongo, James; Mothepane H. Mabowa; Mkhohlakali, Andile; Letsoalo, Mokgehle R.Monitoring river systems is crucial for understanding and managing water resources, predicting natural disasters, and maintaining ecological balance. Assessment of heavy metal pollution derived valuable data which are critical for the environmental management and regulatory compliance of the Jukskei River. Heavy elements were evaluated in the Jukskei River for seasonal impact, potential health risks, and contamination level with concentration levels ranging from 6900 mg/kg iron (Fe) to 0.85 mg/kg cadmium (Cd) in the dry sampling season and 6900 mg/kg Fe to 0.26 mg/kg Cd in the wet season. Enrichment factor analysis indicated high contamination levels of Fe and Pb in both dry and wet seasons. Moreover, pollution indicators revealed extremely high contamination of geo-accumulation and enrichment factors in the downstream to upstream in both seasons with a mild contamination factor for mercury (Hg). Principal Component Analysis revealed anthropogenic sources of arsenic (As), Cd, and Pb due to wastewater and agricultural pesticide application while Thorium (Th), uranium (U) and Hg were attributed as a results of gold mining activities. ANOVA and Pearson correlation analysis showed a high and moderate link between As–Pb, Cd–Pd, and As–Hg, which are significantly correlated. The potential ecological risk index assessment revealed a significant impact of heavy metals on the freshwater ecosystem.