School of Geography, Archaeology and Environmental Studies (Journal Articles)

Permanent URI for this collectionhttps://hdl.handle.net/10539/38033

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    The synergetic effect of drought and land use changes on Ethiopian Rift Valley Northwestern Escarpment livelihood systems
    (Springer, 2025-02) Gidey, Eskinder; Mhangara, Paidamwoyo; Nasir, Jemal; Zeleke, Tesfaye; Assefa, Engdawork; Kahsay, Shishay; Birhane, Emiru
    Climate change has significantly impacted smallholder farmers in developing countries, where most livelihoods rely on rain-fed agricultural systems. The Northwestern Escarpment of the Ethiopian Rift Valley (NEERV) is among Ethiopia’s most drought-vulnerable areas and is highly affected by land use and land cover change (LULCC). This study aimed to analyze the synergistic impacts of drought and LULCC in the three major livelihood zones (LZs) of NEERV between 1983 and 2019. The study used socioeconomic, climatic, and earth observation datasets. Utilizing a mix of socioeconomic, climatic, and earth observation datasets, this paper investigated the combined effects of these factors on three major livelihood zones: Alagie-Ofla (ALOFLZ), Tsirare catchment (TCLZ), and Raya Valley (RVLZ). The analysis revealed significant rainfall variability, with annual fluctuations between 31 and 50% and seasonal variations ranging from 39 to 99%. This variability has contributed to frequent drought occurrences, with intervals of approximately 2.13 years in ALOFLZ, 2.2 years in TCLZ, and 2.13 years in RVLZ. There has been a notable increase in cultivated and built-up areas across all zones. The study found that drought and LULCC have severely impacted agricultural productivity and local ecosystems, with the most pronounced effects observed in RVLZ, TCLZ, and ALOFLZ. The findings highlight a critical need for integrated approaches to manage and monitor the synergistic impacts of drought and LULCC. The study underscores the importance of enhancing drought and LULCC monitoring systems to improve resilience and adaptability in vulnerable regions. The research contributes to a deeper understanding of how these intertwined factors exacerbate environmental and socioeconomic challenges, offering valuable insights into policy and management strategies for mitigating their effects. Recommendations include enhancing the current drought and LULCC monitoring systems to improve predictions and mitigation efforts, thus bolstering resilience and adaptability among affected communities.
  • Thumbnail Image
    Item
    New modern and Pleistocene fossil micromammal assemblages from Swartkrans, South Africa: Paleobiodiversity, taphonomic, and environmental context
    (Elsevier, 2024-03) Steininger, Christine; Clarke, Ronald J.; Caruana, Matthew V.; Kuman, Kathleen; Pickering, Travis Rayne; Linchamps, Pierre; Stoetzel, Emmanuelle; Amberny, Laurie
    The oldest deposit at the hominin-bearing cave of Swartkrans, South Africa, is the Lower Bank of Member 1, dated to ca. 2.2 million years ago. Excavations of this unit have produced a diverse and extensive mammalian fossil record, including Paranthropus robustus and early Homo fossils, along with numerous Oldowan stone tools. The present study focuses on the taxonomic analysis of the micromammalian fossil assemblage obtained from recent excavations of the Lower Bank, conducted between 2005 and 2010, as part of the Swartkrans Paleoanthropological Research Project. The taxonomic composition of this assemblage is dominated by Mystromys, a rodent indicative of grassland environments. Taphonomic analysis indicates an accumulation of prey by Tyto alba (Barn owl) or a related species. Environments inferred from this evidence reflect an open landscape primarily covered by grassland vegetation, but they also feature components of wooded areas, rocky outcrops, and the proximity of a river. The Swartkrans fossil assemblage is compared with Cooper's D (dated to ca. 1.4 Ma) and a modern coprocoenosis of Bubo africanus (spotted eagle-owl) collected within the Swartkrans cave for taxonomic, taphonomic, and paleoecological perspectives. Contrasting fossil and modern micromammalian data provide a better understanding of accumulation processes and facilitate a diachronic reconstruction of changes in climate and landscape evolution. Issues regarding paleoenvironmental reconstruction methodologies based on micromammals are also discussed.
  • Thumbnail Image
    Item
    The Miocene primate Pliobates is a pliopithecoid
    (Nature Research, 2024-04) Amélie Beaudet; Zanolli, Clément; Urciuoli, Alessandro; Almécija, Sergio; Fortuny, Josep; Robles, Josep M.; Bouchet, Florian; Moyà-Solà, Salvador; Alba, David M.
    The systematic status of the small-bodied catarrhine primate Pliobates cataloniae, from the Miocene (11.6 Ma) of Spain, is controversial because it displays a mosaic of primitive and derived features compared with extant hominoids (apes and humans). Cladistic analyses have recovered Pliobates as either a stem hominoid or as a pliopithecoid stem catarrhine (i.e., preceding the cercopithecoid–hominoid divergence). Here, we describe additional dental remains of P. cataloniae from another locality that display unambiguous synapomorphies of crouzeliid pliopithecoids. Our cladistic analyses support a close phylogenetic link with poorly-known small crouzeliids from Europe based on (cranio)dental characters but recover pliopithecoids as stem hominoids when postcranial characters are included. We conclude that Pliobates is a derived stem catarrhine that shows postcranial convergences with modern apes in the elbow and wrist joints—thus clarifying pliopithecoid evolution and illustrating the plausibility of independent acquisition of postcranial similarities between hylobatids and hominids.