Electronic Theses and Dissertations (Masters)
Permanent URI for this collectionhttps://hdl.handle.net/10539/38015
Browse
Search Results
Item Relaxed Inertial Algorithm for Solving Equilibrium Problems(University of the Witwatersrand, Johannesburg, 2024) Elijah, Nwakpa ChidiIn this dissertation, we propose and study two relaxed inertial methods for solving equilibrium problems. In our first proposed method, we establish that the generated sequence of our proposed method weakly converges to a solution of the equilibrium problems. We apply this proposed method to variational inequality and fixed point problems. Further- more, a modification of the first method leads us to our second iterative method. Again, we established that the sequence generated by this method converges strongly to a solution of the equilibrium problems. Our proposed methods involve self-adaptive stepsizes and hence, do not require the fore knowledge of the Lipschitz constants for implementation. In each of our proposed methods, the convergence is established when the associated cost bifunction is pseudomonotone and satisfies the Lipschitz-type conditionItem Convergence Results for Inertial Regularized Bilevel Variational Inequality Problems(University of the Witwatersrand, Johannesburg, 2024) Okorie, Kalu Okam; Okeke, Chibueze ChristianIn this dissertation, we introduce and study the inertial forward-reflected-backward method for approximating a solution of bilevel variational inequality problems. Our proposed method involves a single projection onto a feasible set, one functional evaluation and adopts the inertial extrapolation term. These features make our algorithm cost-effective and efficient, which is desirable when the cost operator and the feasible set have a complex structure. We incorporate the regularization technique in our method and establish that the sequences generated by our method converge strongly to a solution of the bilevel variational inequality problem studied in this work; furthermore, we modified our method by replacing the stepsizes and projection onto a feasible set with a self-adaptive non-monotonic stepsizes and projection onto a constructive halfspace, respectively. The non-monotonic stepsizes ensure that our method performs without the previous detail of the Lipschitz constant, and the projection onto a constructive halfspace is cheap since its computation is through an explicit formula. These adjustments in our method ensure an improved performance, cheap computation and easy implementation of our method. We show the strong convergence result of the iterative sequences. Lastly, we give numerical experiments comparing the performance of the proposed methods with existing methods