Nephrology

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/32807

This collection contains data collected in the course of clinical work in Nephrology across several hospitals In particular , the CMJAH Living Donor Clinic has a long history . You can see that the work of the unit has inspired or directly produced many thesis. We also have a selection of work on transplants. This collection also includes data on kidney disease from other tertiary hospitals in gauteng

News

PARTICIPANT NOTICE OF DATA SHARING FOR STUDY TITLED ‘EVALUATION OF POTENTIAL KIDNEY DONORS AND OUTCOMES POST-DONATION AT CHARLOTTE MAXEKE JOHANNESBURG ACADEMIC HOSPITAL (1983-2015)’.

Good day, The Division of Nephrology at Charlotte Maxeke Johannesburg Academic Hospital ( Previously JHB GEN)conducted a research study in the unit’s Living Donor Clinic. The study assessed clinical data of all individuals who presented to this clinic from January 1983 to July 2015. Written permission to access clinical records was obtained from the Human Research Ethics Committee (Medical) of the University of the Witwatersrand, Johannesburg. The purpose of the study was to analyze living kidney donation in the South African setting with the hope that the clinical findings of this research may contribute toward the future betterment of care for all potential kidney donors and that this data may expand upon the limited information available in this important field of study. As a patient belonging to this Living Donor Transplant Community, you have the right to direct how your information is shared for use by research platforms. You may engage with the principal investigator of this study should you have any queries regarding how the data from this study is being applied. You may also withdraw consent to share any information you feel is potentially identifying at any point. Should you require any further information regarding the study, please feel free to contact the principal investigator, Dr Chandni Dayal via email

chandni.dayal@wits.ac.za

or telephonically on 011 489 0467. Please note that prior to accessing your clinical records, approval was obtained from the Human Research Ethics Committee (Medical) of the University of the Witwatersrand, Johannesburg. A principal function of this Committee is to safeguard the rights and dignity of all individuals who are a part of research projects and the integrity of the research. If you have any complaints or concerns over the way the study was conducted, please contact the Chairperson of this Committee who is Dr. Clement Penny, on telephone number 011 717 2301, or by e-mail

Clement.Penny@wits.ac.za

The telephone numbers for the Committee secretariat are 011 717 2700/1234 and the e-mail addresses are Zanele.Ndlovu@wits.ac.za and Rhulani.Mukansi@wits.ac.za Thank you for reading this notice. 11 March 2022 Dr Chandni Dayal

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Dataset from: Clinicopathological correlation of kidney disease in HIV infection pre- and post- ART rollout: VERSION 2
    (2022-04-14) Diana, Nina Elisabeth; Davies, Malcolm; Mosiane, Pulane; Vermeulen, Alda; Naicker, Saraladevi
    Data note Methods Ethics approval for this study was granted in writing by the Human Research Ethics Committee (Medical) of the University of the Witwatersrand, Johannesburg, South Africa (clearance certificate numbers M1511104, M121184, M120874). This approval permitted a record review of all HIV-positive patients who underwent a kidney biopsy at two tertiary hospitals in Johannesburg within the defined study period. Informed consent for this retrospective record review was waived. Data from included patients was anonymised prior to statistical analysis. Renal biopsies performed at these two tertiary hospitals, on HIV-positive individuals, from January 1989 to December 2014 were retrospectively analysed. Demographic data (age, sex and race), clinical parameters (CD4 count, HIV viral load, serum creatinine and urine protein creatinine ratio), indication for biopsy and renal histological pattern was recorded at time of kidney biopsy. The estimated glomerular filtration rate (eGFR) was calculated according to the CKD-EPI creatinine equation without ethnicity correction. ART rollout began in April 2004 in South Africa. Patients were divided into 2 groups - those who were biopsied pre-ART rollout and those biopsied post-ART rollout. These two groups were compared with respect to the above parameters. In a subgroup of the patients biopsied between 2004 and 2014, additional data laboratory parameters (serum haemoglobin, serum albumin, serial serum creatinine and eGFR) and ART use (at time of biopsy) were recorded. All renal biopsies were processed according to standard techniques for light microscopy, immunofluorescence and electron microscopy. All biopsies were reviewed by the National Health Laboratory Service histopathology team who were aware of the HIV status of the patient at time of biopsy. Histological diagnoses were tabulated using the 2018 Kidney Disease Improving Global Outcomes (KDIGO) Controversies Conference guidelines. As per this guideline FSGS (NOS) in the setting of HIV describes all non-collapsing forms of FSGS. Those ICGN with no identifiable comparative etiology other than HIV were categorized as uncharacterized ICGN with no etiology other than HIV. The biopsies with multiple diagnoses were assigned its major clinical-pathological diagnosis for the purposes of analysis. All data was collected by Dr Nina Diana and Dr Alda Vermeulen from paper based patient hospital records and the electronic hospital laboratory system. All data was checked twice to ensure accuracy. Each patient was allocated a study number and data anonymised prior to entry into Microsoft Excel. Shapiro Wilk W testing and visual inspection of the histogram plot indicated non-parametric distribution of baseline characteristics of the cohort; accordingly, central and dispersal measurements were described using the median and interquartile range (IQR), and the Kruskal Wallis ANOVA and Mann-Whitney U tests were used for comparative analyses. Kidney survival, defined by an eGFR above threshold for consideration for dialysis initiation in these institutions (15mL/min/1.73m²), censored for patient default with preserved function, was fitted for patients in the subgroup using the Kaplan Meyer method; histological diagnoses were compared using Log-rank testing.
  • Thumbnail Image
    Item
    Dataset From: Evaluation of potential kidney donors and outcomes post-donation at Charlotte Maxeke Johannesburg Academic Hospital (1983-2015)
    (Division of Nephrology, Charlotte Maxeke Johannesburg Academic Hospital, 2022-03-23) Dayal, Chandni; Davies, Malcolm; Diana, Nina Elisabeth; Meyers, Anthony M.
    Data was collected from existing clinical records of the Living Donor Clinic held by the Division of Nephrology at Charlotte Maxeke Johannesburg Academic Hospital. This was performed by the primary investigator / first author in a pseudo-anonymized fashion and stored securely in an Excel database to which only the primary investigator had access along with the data key. Procedures pertaining to original data capturing to clinical records by the data manager (Sister Nancy Makoe), were in accordance with the standard operating procedure set out by the Transplant Unit at Charlotte Maxeke Johannesburg Academic Hospital. Objectives of research Primary Objective • To determine donor morbidity and mortality after donation. • Analysis of morbidity will focus on the development of - New onset hypertension following donation (BP ≥140/90) - Chronic kidney disease following donation, defined as the development of either of the following - New onset proteinuria (AER >300mg/day) - An eGFR <60 ml/min/1.73 m² (using the CKD-EPI formula) Secondary Objectives • To determine the reasons for exclusion of potential donors from living kidney donation • To determine the prevalence of ESKD following donation (eGFR <15 ml/min/1.73 m² using the CKD-EPI formula) • To determine potential risk factors associated with proteinuria and/or a reduced eGFR post kidney donation, by evaluating a. donor demographics b. the presence of isolated medical abnormalities prior to donation, defined by: - a borderline pre-donation 51Cr-EDTA GFR (<80 ml/min/1.73 m²) - pre-existing hypertension (well controlled on a single agent with no end-organ damage) - class I obesity (BMI 30-35 kg/m²) • To determine the proportion of patients lost to follow-up post donation 5.2 Study design A single centre retrospective observational study was conducted of all patients attending the Living Donor Clinic in the Renal Unit at CMJAH over a 32-year period between 01 January 1983 and 31 July 2015. The closing date for sampling reflects the period of protocol submission for this study. The cohort comprised of 1208 potential living donors, of which: • 910 are failed living donors, assessed between 01 January 1990 and 31 July 2015 • 298 are accepted living donors, assessed between 01 January 1983 and 31 July 2015 5.3 Data collection 5.2.1 Data collection for failed living donors Data collection for failed living donors comprised the following parameters: • Demographic data – age at assessment, gender and ethnicity • Family history of the donor • Relation to the intended recipient – whether related, unrelated or altruistic • The outcome of eligibility evaluation • If excluded from living donation, reasons for non-donation will be documented, which were categorised as: - donor-recipient related, - donor-related, - recipient-related, or - miscellaneous. • The indications and findings of any renal biopsy undertaken on a donor was recorded 5.2.2 Data collection for accepted living donors Data collection for accepted living donors comprised the following parameters: • Demographic information – gender, ethnicity, age at donation (as well as age at each follow-up point) • Family history of the accepted donor • Details pertaining to the donation, specifically: - relation to the recipient, as well as cause of renal failure in the recipient - the date of donation - the graft outcome (if known) • The last follow-up date at the Living Donor Clinic and the approximate number of post-donation follow-up visits • Domicile in relation to the Living Donor Clinic (in kilometres from transplant centre) • The reason for lost to follow-up (if known) • Baseline characteristics at donation, including: - Body mass index - Urine albumin: creatinine ratio - Systolic blood pressure - Diastolic blood pressure - Baseline serum creatinine - eGFR as defined by an isotope study, the chromium-51-ethylene-diamine-tetra-aceticacid scan (51Cr EDTA scan) as well as the CKD-EPI formula - Habits, including smoking status and history of alcohol consumption - History of pre-existing medical condition(s) • Characteristics at follow-up (correlated with time after donation), including: - Body mass index - Urine albumin: creatinine ratio - Systolic blood pressure - Diastolic blood pressure - Serum creatinine - eGFR as defined by the CKD-EPI formula - Habits, including smoking status and alcohol consumption - Development of co-morbid disease - History of nephrotoxic drug intake The above variables were retrospectively collected from data recorded at the patients’ first follow-up visit post-donation, one-year post-donation visit, and at the most recent follow-up visit. • Mortality data was collected in accepted living donors that demised during the study period, and will include: - age at death - the time from donation to mortality - cause of death, whether related to renal disease, a cardiovascular event or other cause 5.3 Definition of variables 5.3.1 Classification of donors • Potential living donors (PLDs) – refer to all donors assessed at the CMJAH Living Donor Clinic • Failed living donors (FLDs) – refer to the sub-group of PLDs excluded from living kidney donation • Accepted living donors (ALDs) – refer to the subgroup of PLDs that ultimately donated a kidney 5.3.2 Hypertension Defined as per the Eighth Joint National Committee (JNC8) guidelines for blood pressure targets: • For donors with a current age of more than sixty years: - a systolic blood pressure of more than 150mmHg, with - a diastolic blood pressure of more than 90mmHg • For donors with a current age of less than sixty years: - a systolic blood pressure of more than 140mmHg, with - a diastolic blood pressure of more than 90mmHg 5.3.2 Albuminuria Quantified as per the revised Kidney Disease Improving Global Outcomes (KDIGO) chronic kidney disease classification into three stages of albuminuria based on the albumin excretion rate (AER) in milligrams per day (mg/day): • A1: Normal or mildly increased (AER <30 mg/day) • A2: Moderately increased (AER between 30 - 300 mg/day) • A3: Severely increased (AER >300 mg/day, with nephrotic range proteinuria defined as >3500 mg/day) 5.3.3 Glomerular filtration rate • Pre-donation GFR will be defined: - as per isotope study: 51Cr EDTA scan - as calculated by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula, expressed as: GFR = 141 × min (Scr /κ, 1) α × max (Scr /κ, 1)-1.209 × 0.993Age × 1.018 [if female] × 1.159 [if black] where: GFR = glomerular filtration rate in ml/min/1,73m2 Scr = serum creatinine in mg/dL κ = 0.7 for females and 0.9 for males α = -0.329 for females and -0.411 for males min indicates the minimum of Scr /κ or 1, and max indicates the maximum of Scr /κ or 1. • Post-donation GFR will be calculated by the CKD-EPI formula, as expressed above. 5.3.4 Chronic kidney disease Defined as per the revised Kidney Disease Outcomes Quality Initiative (KDOQI) as either kidney damage or GFR<60 ml/min/1.73 m² for ≥ 3 months. Kidney damage encompasses pathological abnormalities or markers of damage, including biochemical or radiological abnormalities. GFR is further classified into stages (table 1.1). Table 1.1 | Revised KDOQI classification for chronic kidney disease GFR Stages GFR (ml/min/1.73 m2) Classification 1 >90 Normal 2 60 – 89 Mildly decreased 3a 45 – 59 Mildly to moderately decreased 3b 30 – 44 Moderately to severely decreased 4 15 – 29 Severely decreased 5 <15 ESKD 5.3.5 Body mass index • BMI will be calculated as weight (in kilograms) divided by height (in meters) squared. • It will then be sub-classified as per the World Health Organisation (WHO) international BMI classification (table 1.2). Table 1.2 | WHO international classification of BMI Classification BMI (kg/m2) Underweight < 18.5 Normal Range 18.5 to 24.99 Overweight Pre-obese Obese - Obese Class I - Obese Class II - Obese Class III ≥ 25 25 to 29.99 ≥ 30 30 to 34.99 35 to 39.99 ≥ 40 5.3.6 Isolated medical abnormalities Refers to donors with any of the following characteristics prior to donation: • A borderline 51Cr-EDTA GFR <80 ml/min/1.73 m2 • Pre-existing hypertension well-controlled on a single agent with no end- organ damage • Class I obesity (BMI 30 - 35 kg/m2 )
If you, your family member or spouse was involved in the clinic , we urge you to read the notice above. You are welcome to comment on the data, express concerns or ask for changes in how the data is being shared. The library holds data in safekeeping for the researcher, for the community and for the sake of open science. You can contact the curator of the collection: Data Services Librarian: Nina Lewin at email

nina.lewin@wits.ac.za

or telephonically on 0814121940.