ETD Collection
Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/104
Please note: Digitised content is made available at the best possible quality range, taking into consideration file size and the condition of the original item. These restrictions may sometimes affect the quality of the final published item. For queries regarding content of ETD collection please contact IR specialists by email : IR specialists or Tel : 011 717 4652 / 1954
Follow the link below for important information about Electronic Theses and Dissertations (ETD)
Library Guide about ETD
Browse
4 results
Search Results
Item On lie and Noether symmetries of differential equations.(1994) Kara, A. H.The inverse problem in the Calculus of Variations involves determining the Lagrangians, if any, associated with a given (system of) differential equation(s). One can classify Lagrangians according to the Lie algebra of symmetries of the Action integral (the Noether algebra). We give a complete classification of first-order Lagrangians defined on the line and produce results pertaining to the dimensionality of the algebra of Noether symmetries and compare and contrast these with similar results on the algebra of Lie symmetries of the corresponding Euler-Lagrange .equations. It is proved that the maximum dimension of the Noether point symmetry algebra of a particle Lagrangian. is five whereas it is known that the maximum dimension Qf the Lie algebra of the corresponding scalar second-order Euler-Lagrange equation is eight. Moreover, we show th'a.t a particle Lagrangian does not admit a maximal four-dimensional Noether point symmeiry algebra and consequently a particle Lagrangian admits the maximal r E {O, 1,2,3, 5}-dimensional Noether point symmetry algebra, It is well .known that an important means of analyzing differential equations lies in the knowledge of the first integrals of the equation. We deliver an algorithm for finding first integrals of partial differential equations and show how some of the symmetry properties of the first integrals help to 'further' reduce the order of the equations and sometimes completely solve the equations. Finally, we discuss some open questions. These include the inverse problem and classification of partial differential equations. ALo, there is the question of the extension of the results to 'higher' dimensions.Item Equivalence and symmetry groups of a nonlinear equation in plasma physics(2016-07-14) Bashe, Mantombi BerylIn this work we give a brief overview of the existing group classification methods of partial differential equations by means of examples. On top of these methods we introduce another new method which classify according to low-dimensional Lie elgebras, One can ask: What is the aim of introducing a new method whilst there are existing methods? This question is answered in the following paragraph. Firstly we classify our system of non-linear partial differential equations using the preliminary group classification method (one of the existing methods). The results are not different from what; Euler, Steeb and Mulsor have obtained in 1991 and 1992. That is, this method does not yield new information. This new method which classifies according to low-dimensional Lie algebras is used to classify a general system of equations from plasma physics. Finally, using this method we completely classify our system for four-dimensionnl algebras. For a partial differential equation to be completely classified using this method, it must admit a low-dimensional Lie algebra.Item Classical symmetry reductions of steady nonlinear one-dimensional heat transfer models(2015-02-04) Moleofane, Kamogelo JacobethWe study the nonlinear models arising in heat transfer in extended surfaces (fins) and in solid slab (hot body). Here thermal conductivity, internal generation and heat transfer coefficient are temperature dependent. As such the models are rendered nonlinear. We employ Lie point symmetry techniques to analyse these models. Firstly we employ Lie point symmetry methods and determine the exact solutions for heat transfer in fins of spherical geometry. These solutions are compared with the solutions of heat transfer in fins of rectangular and radial geometries. Secondly, we consider models describing heat transfer in a hot body, for example, a plane wall. We then employ the preliminary group classification methods to determine the cases of the arbitrary function for which the principal Lie algebra is extended by one. Furthermore we the exact solutions.Item Symmetry properties for first integrals(2015-02-02) Mahomed, Komal ShahzadiThis is the study of Lie algebraic properties of first integrals of scalar second-, third and higher-order ordinary differential equations (ODEs). The Lie algebraic classification of such differential equations is now well-known from the works of Lie [10] as well as recently Mahomed and Leach [19]. However, the algebraic properties of first integrals are not known except in the maximal cases for the basic first integrals and some of their quotients. Here our intention is to investigate the complete problem for scalar second-order and maximal symmetry classes of higher-order ODEs using Lie algebras and Lie symmetry methods. We invoke the realizations of low-dimensional Lie algebras. Symmetries of the fundamental first integrals for scalar second-order ODEs which are linear or linearizable by point transformations have already been obtained. Firstly we show how one can determine the relationship between the point symmetries and the first integrals of linear or linearizable scalar ODEs of order two. Secondly, a complete classi cation of point symmetries of first integrals of such linear ODEs is studied. As a consequence, we provide a counting theorem for the point symmetries of first integrals of scalar linearizable second-order ODEs. We show that there exists the 0, 1, 2 or 3 point symmetry cases. It is proved that the maximal algebra case is unique. By use of Lie symmetry group methods we further analyze the relationship between the first integrals of the simplest linear third-order ODEs and their point symmetries. It is well-known that there are three classes of linear third-order ODEs for maximal and submaximal cases of point symmetries which are 4, 5 and 7. The simplest scalar linear third-order equation has seven point symmetries. We obtain the classifying relation between the symmetry and the first integral for the simplest equation. It is shown that the maximal Lie algebra of a first integral for the simplest equation y000 = 0 is unique and four-dimensional. Moreover, we show that the Lie algebra of the simplest linear third-order equation is generated by the symmetries of the two basic integrals. We also obtain counting theorems of the symmetry properties of the first integrals for such linear third-order ODEs of maximal type. Furthermore, we provide insights into the manner in which one can generate the full Lie algebra of higher-order ODEs of maximal symmetry from two of their basic integrals. The relationship between rst integrals of sub-maximal linearizable third-order ODEs and their symmetries are investigated as well. All scalar linearizable third-order equations can be reduced to three classes by point transformations. We obtain the classifying relations between the symmetries and the first integral for sub-maximal cases of linear third-order ODEs. It is known, from the above, that the maximum Lie algebra of the first integral is achieved for the simplest equation. We show that for the other two classes they are not unique. We also obtain counting theorems of the symmetry properties of the rst integrals for these classes of linear third-order ODEs. For the 5 symmetry class of linear third-order ODEs, the first integrals can have 0, 1, 2 and 3 symmetries and for the 4 symmetry class of linear third-order ODEs they are 0, 1 and 2 symmetries respectively. In the case of sub-maximal linear higher-order ODEs, we show that their full Lie algebras can be generated by the subalgebras of certain basic integrals. For the n+2 symmetry class, the symmetries of the rst integral I2 and a two-dimensional subalgebra of I1 generate the symmetry algebra and for the n + 1 symmetry class, the full algebra is generated by the symmetries of I1 and a two-dimensional subalgebra of the quotient I3=I2. Finally, we completely classify the first integrals of scalar nonlinear second-order ODEs in terms of their Lie point symmetries. This is performed by first obtaining the classifying relations between point symmetries and first integrals of scalar nonlinear second order equations which admit 1, 2 and 3 point symmetries. We show that the maximum number of symmetries admitted by any first integral of a scalar second-order nonlinear (which is not linearizable by point transformation) ODE is one which in turn provides reduction to quadratures of the underlying dynamical equation. We provide physical examples of the generalized Emden-Fowler, Lane-Emden and modi ed Emden equations.