ETD Collection

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/104


Please note: Digitised content is made available at the best possible quality range, taking into consideration file size and the condition of the original item. These restrictions may sometimes affect the quality of the final published item. For queries regarding content of ETD collection please contact IR specialists by email : IR specialists or Tel : 011 717 4652 / 1954

Follow the link below for important information about Electronic Theses and Dissertations (ETD)

Library Guide about ETD

Browse

Search Results

Now showing 1 - 8 of 8
  • Item
    Symmetries and conservation laws of difference and iterative equations
    (2016-01-22) Folly-Gbetoula, Mensah Kekeli
    We construct, using rst principles, a number of non-trivial conservation laws of some partial di erence equations, viz, the discrete Liouville equation and the discrete Sine-Gordon equation. Symmetries and the more recent ideas and notions of characteristics (multipliers) for di erence equations are also discussed. We then determine the symmetry generators of some ordinary di erence equations and proceed to nd the rst integral and reduce the order of the di erence equations. We show that, in some cases, the symmetry generator and rst integral are associated via the `invariance condition'. That is, the rst integral may be invariant under the symmetry of the original di erence equation. We proceed to carry out double reduction of the di erence equation in these cases. We then consider discrete versions of the Painlev e equations. We assume that the characteristics depend on n and un only and we obtain a number of symmetries. These symmetries are used to construct exact solutions in some cases. Finally, we discuss symmetries of linear iterative equations and their transformation properties. We characterize coe cients of linear iterative equations for order less than or equal to ten, although our approach of characterization is valid for any order. Furthermore, a list of coe cients of linear iterative equations of order up to 10, in normal reduced form is given.
  • Item
    Invariances, conservation laws and conserved quantities of the two-dimensional nonlinear Schrodinger-type equation
    (2014) Lepule, Seipati
    Symmetries and conservation laws of partial di erential equations (pdes) have been instrumental in giving new approaches for reducing pdes. In this dissertation, we study the symmetries and conservation laws of the two-dimensional Schr odingertype equation and the Benney-Luke equation, we use these quantities in the Double Reduction method which is used as a way to reduce the equations into a workable pdes or even an ordinary di erential equations. The symmetries, conservation laws and multipliers will be determined though di erent approaches. Some of the reductions of the Schr odinger equation produced some famous di erential equations that have been dealt with in detail in many texts.
  • Item
    Symmetry properties for first integrals
    (2015-02-02) Mahomed, Komal Shahzadi
    This is the study of Lie algebraic properties of first integrals of scalar second-, third and higher-order ordinary differential equations (ODEs). The Lie algebraic classification of such differential equations is now well-known from the works of Lie [10] as well as recently Mahomed and Leach [19]. However, the algebraic properties of first integrals are not known except in the maximal cases for the basic first integrals and some of their quotients. Here our intention is to investigate the complete problem for scalar second-order and maximal symmetry classes of higher-order ODEs using Lie algebras and Lie symmetry methods. We invoke the realizations of low-dimensional Lie algebras. Symmetries of the fundamental first integrals for scalar second-order ODEs which are linear or linearizable by point transformations have already been obtained. Firstly we show how one can determine the relationship between the point symmetries and the first integrals of linear or linearizable scalar ODEs of order two. Secondly, a complete classi cation of point symmetries of first integrals of such linear ODEs is studied. As a consequence, we provide a counting theorem for the point symmetries of first integrals of scalar linearizable second-order ODEs. We show that there exists the 0, 1, 2 or 3 point symmetry cases. It is proved that the maximal algebra case is unique. By use of Lie symmetry group methods we further analyze the relationship between the first integrals of the simplest linear third-order ODEs and their point symmetries. It is well-known that there are three classes of linear third-order ODEs for maximal and submaximal cases of point symmetries which are 4, 5 and 7. The simplest scalar linear third-order equation has seven point symmetries. We obtain the classifying relation between the symmetry and the first integral for the simplest equation. It is shown that the maximal Lie algebra of a first integral for the simplest equation y000 = 0 is unique and four-dimensional. Moreover, we show that the Lie algebra of the simplest linear third-order equation is generated by the symmetries of the two basic integrals. We also obtain counting theorems of the symmetry properties of the first integrals for such linear third-order ODEs of maximal type. Furthermore, we provide insights into the manner in which one can generate the full Lie algebra of higher-order ODEs of maximal symmetry from two of their basic integrals. The relationship between rst integrals of sub-maximal linearizable third-order ODEs and their symmetries are investigated as well. All scalar linearizable third-order equations can be reduced to three classes by point transformations. We obtain the classifying relations between the symmetries and the first integral for sub-maximal cases of linear third-order ODEs. It is known, from the above, that the maximum Lie algebra of the first integral is achieved for the simplest equation. We show that for the other two classes they are not unique. We also obtain counting theorems of the symmetry properties of the rst integrals for these classes of linear third-order ODEs. For the 5 symmetry class of linear third-order ODEs, the first integrals can have 0, 1, 2 and 3 symmetries and for the 4 symmetry class of linear third-order ODEs they are 0, 1 and 2 symmetries respectively. In the case of sub-maximal linear higher-order ODEs, we show that their full Lie algebras can be generated by the subalgebras of certain basic integrals. For the n+2 symmetry class, the symmetries of the rst integral I2 and a two-dimensional subalgebra of I1 generate the symmetry algebra and for the n + 1 symmetry class, the full algebra is generated by the symmetries of I1 and a two-dimensional subalgebra of the quotient I3=I2. Finally, we completely classify the first integrals of scalar nonlinear second-order ODEs in terms of their Lie point symmetries. This is performed by first obtaining the classifying relations between point symmetries and first integrals of scalar nonlinear second order equations which admit 1, 2 and 3 point symmetries. We show that the maximum number of symmetries admitted by any first integral of a scalar second-order nonlinear (which is not linearizable by point transformation) ODE is one which in turn provides reduction to quadratures of the underlying dynamical equation. We provide physical examples of the generalized Emden-Fowler, Lane-Emden and modi ed Emden equations.
  • Item
    Solitary wave solutions for the magma equation: symmetry methods and conservation laws
    (2015-01-30) Mindu, Nkululeko
    The magma equation which models the migration of melt upwards through the Earth’s mantle is considered. The magma equation depends on the permeability and viscosity of the solid mantle which are assumed to be a function of the voidage . It is shown using Lie group analysis that the magma equation admits Lie point symmetries provided the permeability and viscosity satisfy either a power law, or an exponential law for the voidage or are constant. The conservation laws for the magma equation for both power law and exponential law permeability and viscosity are derived using the multiplier method. The conserved vectors are then associated with Lie point symmetries of the magma equation. A rarefactive solitary wave solution for the magma equation is derived in the form of a quadrature for exponential law permeability and viscosity. Finally small amplitude and large amplitude approximate solutions are derived for the magma equation when the permeability and viscosity satisfy exponential laws.
  • Item
    Symmetries, conservation laws and reductions of Schrodinger systems of equations
    (2014-06-12) Masemola, Phetogo
    One of the more recently established methods of analysis of di erentials involves the invariance properties of the equations and the relationship of this with the underlying conservation laws which may be physical. In a variational system, conservation laws are constructed using a well known formula via Noether's theorem. This has been extended to non variational systems too. This association between symmetries and conservation laws has initiated the double reduction of di erential equations, both ordinary and, more recently, partial. We apply these techniques to a number of well known equations like the damped driven Schr odinger equation and a transformed PT symmetric equation(with Schr odinger like properties), that arise in a number of physical phenomena with a special emphasis on Schr odinger type equations and equations that arise in Optics.
  • Item
    Potential flows and transformation groups
    (2014-03-04) Pereira, Kevin Paul
    In this work we will consider the steady and two-dimensional potential flow of an incompressible fluid past a body without friction. Contrary to common experience, we will show that it is possible to calculate the Lie point symmetries that will leave the boundary value problem invariant. We are able to do this by solving the determining equation for the Lie point symmetries subject to a side condition. The side condition is a consequence of the boundary condition that occurs in the boundary value problem. We will show that solutions of the boundary value problem that were obtained previously using the method of conformal transformations are also group invariant solutions of the boundary value problem. We will also show that every group invariant solution of the boundary value problem can be used to generate new group invariant solutions of the same boundary value problem.
  • Item
    Ramsey functions for spaces with symmetries
    (2012-09-18) Kyriazis, Eleftherios
    In this dissertation we study the notion of symmetry on groups, topological spaces, et cetera. The relationship between such structures with symmetries and Ramsey Theory is re ected by certain natural functions. We give a general picture of asymptotic behaviour of these functions.