Research Outputs (School of Physics)
Permanent URI for this collection
Browse
Browsing Research Outputs (School of Physics) by Keyword "ATLAS DETECTOR"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Measuring CP nature of top-Higgs couplings at the future LargeHadron electron Collider(Elsevier, 2017-07) Coleppa, B.; Kumar, M.; Kumar, S.; Mellado, B.We investigate the sensitivity of top-Higgs coupling by considering the associated vertex as CP phase (ζt) dependent through the process pe−→t¯hνe in the future Large Hadron electron Collider. In particular the decay modes are taken to be h→bb¯ and t¯ → leptonic mode. Several distinct ζt dependent features are demonstrated by considering observables like cross sections, top-quark polarisation, rapidity difference between h and t¯ and different angular asymmetries. Luminosity (L) dependent exclusion limits are obtained for ζt by considering significance based on fiducial cross sections at different σ-levels. For electron and proton beam-energies of 60 GeV and 7 TeV respectively, at L=100 fb−1, the regions above π/5<ζt≤π are excluded at 2σ confidence level, which reflects better sensitivity expected at the Large Hadron Collider. With appropriate error fitting methodology we find that the accuracy of SM top-Higgs coupling could be measured to be κ=1.00±0.17(0.08) at s=1.3(1.8) TeV for an ultimate L=1ab−1.Item Probing anomalous couplings using di-Higgs production in electron–proton collisions(Elsevier, 2017-01) Kumar, M.; Ruan, X.; Islam, R.; Klein, M.; Klein, U.; Mellado, B.; Cornell, A.S.A proposed high energy Future Circular Hadron-Electron Collider would provide sufficient energy in a clean environment to probe di-Higgs production. Using this channel we show that the azimuthal angle correlation between the missing transverse energy and the forward jet is a very good probe for the non-standard hhh and hhWW couplings. We give the exclusion limits on these couplings as a function of integrated luminosity at a 95% C.L. using the fiducial cross sections. With appropriate error fitting methodology we find that the Higgs boson self coupling could be measured to be g(hhh)((1)) = 1.00(-0.17(0.12))(+0.24(0.14)) of its expected Standard Model value at root s = 3.5(5.0) TeV for an ultimate 10 ab(-1) of integrated luminosity.