Electronic Theses and Dissertations (PhDs)
Permanent URI for this collection
Browse
Browsing Electronic Theses and Dissertations (PhDs) by Keyword "Nanodielectric"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Reducing water absorption characteristics of kraft paper reinforced with modified nanoparticles(2024) Katun, Mohammed MahmoodThe inherent hydrophilic characteristics of cellulose wood fibre compromise the dielectric properties of kraft paper insulation that is used mainly in oil-insulated power transformers. This thesis, therefore, presents a novel material design model of nanocomposite kraft paper with improved hydrophobic properties for power transformer insulation applications. The concept of nanodielectric kraft paper design was used. Rutile-titanium dioxide nanoparticles (rutile-TiO2 NPs) were selected as the nanofiller. Compared with other metal-oxides, rutileTiO2 NPs are stable in chemical reactions, have good thermal stability and also have high electrical resistivity. Rutile-TiO2 of 19.72 nm diameter were fabricated using the sol-gel method and then used in reinforcing the kraft paper to produce a nanocomposite kraft paper with improved dielectric properties. Since the nanoparticles are inherently hydrophilic, and the intention is to produce a hydrophilic nanocomposite kraft paper, a technique was devised to make the NPs hydrophobic. The rutile-TiO2 NPs were surface conditioned with two alternative surfactants; Alkyl ketene dimer (AKD) and alkenyl succinic anhydride (ASA). Various quantities of the two surfactants were investigated to determine the optimal amount. The resultant surface-modified rutile-TiO2 NPs were studied to understand their hydrophilicity and thermal stability properties. It was found that the unmodified rutile-TiO2 NPs absorbed more moisture, compared with the surface-modified nanofiller, the mass increased by about 4% due to moisture absorption. The surface-modified rutile-TiO2 NPs with 5% AKD had 45% more thermal resilience than the unmodified rutile-TiO2 NPs surface and this is a significant knowledge contribution of this thesis. Using an unbleached kraft pulp, nanocomposite kraft paper specimens were fabricated with nanoparticles having varying surfactant loading. The specimens were then characterized to reveal various critical properties such as hydrophobicity, thermal, dielectric losses and dielectric strength. The version of the nanocomposite kraft paper that gave the most improved water and moisture absorption properties was that with 5vol/vol% ASA surface-modified NPs. The moisture absorption rate dropped by 74% compared to the unfilled kraft paper, and the water vapor transmission rate decreased by 30%. The contact angle of water droplets improved by 12%, and water absorption rate improved by being 4 times slower. The dielectric loss measurements showed that the nanocomposite kraft paper containing rutile-TiO2 NPs (5 vol/vol% ASA) also had 40% lower dielectric losses than the reference (unfilled) samples. The breakdown voltage of the nanocomposite kraft paper increased by about 15% while thermal withstand was improved by 5.4%. This research, therefore, has successfully improved the hydrophobic properties of kraft paper by filling it with surface-modified rutileTiO2 NP. It can be argued from the results that for power transformer application, the novel nanocomposite kraft paper developed in this thesis will improve power transformer insulation reliability design by mitigating the main agents of insulation degradation which are water and thermal stress.